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A B S T R A C T

Modern computer networks have grown to become fundamental in-
frastructure, but the engineering process used to design and man-
age them lacks strong high-level abstractions and systematic design
tooling. They are typically managed by network engineers entering
device configurations in a low-level vendor-specific syntax. The infor-
mation in this low-level configuration must be consistent across the
entire network, with the engineer responsible for converting of high-
level network designs into device configurations. This makes configu-
ration complex, time consuming and error-prone. Recent techniques
such as Software-Defined Networking or network programmability
relieve some of this burden, but are still in development, and often
require upgrades of existing infrastructure and retraining of engineer-
ing staff, and can vary between vendors.

In this thesis we present an approach to automate the process of
generating low-level device configurations for existing network de-
ployments, from a high-level specification. We present a specification
abstraction to capture high-level policy in a format which is compati-
ble with current industry practice, and an approach to transform this
to an intermediate network-wide configuration state representation.
A second transformation step converts the intermediate representa-
tion into the low-level device configuration state appropriate for the
target device, which is then assembled using simple templates. We
show how this multi-stage compiler approach allows the expression
of new high-level policies on different network topologies, variation
of network designs and routing protocols, and generation of configu-
rations for different target devices.

We have incorporated this approach into an open-source tool, Au-
toNetkit, which has been tested on a range of industry-derived net-
work topologies. The test cases show that the approach is extensible
to a wide range of protocols and devices, and scalable up to the a size
comparable to the core devices of the European academic network.
Valid configurations for over a thousand devices can be generated
in seconds. AutoNetkit has also been used in peer-reviewed demon-
strations and as a component in tools used by network engineers in
industry.
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G L O S S A RY

abstract network model The set of all Network Views, representing
the intermediate representation of the network to be configured.

device compiler A function to transform the Abstract Network Model
and Intermediate Hardware Model into a device entry in the Interme-
diate Device Model

design function A function to build a Network View from the Network
Whiteboard and/or other Network Views

intermediate device model The model which stores the configuration
information for each network device

intermediate hardware model The model which stores the hardware
information for a network device.

intermediate platform model The model which stores information
about the platform configuration, such as for a simulation environ-
ment

network element connection A physical or logical connection be-
tween Network Element Interfaces

network element interface A physical or logical interface on a Net-
work Element

network element An element in the Network View, representing a de-
vice to be configured

network view A slice of the Abstract Network Model representing a topol-
ogy such as for a routing protocol or for IP Addressing

network whiteboard The High-Level annotated topology describing
the network to be configured

platform compiler A function to transform the Network Whiteboard
into the Intermediate Hardware Model

pseudo network element A Network Element that doesn’t correspond
to a device to be configured. Typically used to represent intermediate
concepts used for subsequent Network Views
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1
I N T R O D U C T I O N

1.1 introduction

In this chapter we introduce the main content of the thesis. We first
motivate the need for the work. We provide an overview of the
deficiencies in current solutions, and how the work of this thesis aims
to overcome these. We then provide an overview of the structure of
this thesis. Finally, we summarise the research contributions of this
thesis.

1.2 motivation

Computer networks have become fundamental to all aspects of the
information age. Computer networks have evolved progressively and
much of the infrastructure for their design and management was
created in an ad-hoc way to address problems as they arose. Far too
many network configuration updates are inserted into existing net-
works manually at the lowest level command line interface of routers.
Whilst networking professionals work with high-level conceptual de-
signs, often called high-level network configuration policies, these are
often informal documents that require extensive interpretation before
they can be implemented. The consequences of this situation are that
errors, related to the large level of details that individual probationers
need to be aware of, are common place. This can lead to unplanned
outages and very high maintained costs for upgrades.

This situation has not gone unnoticed in the academic community.
The most well-known proposal to address these concerns is software
defined networking (SDN). However SDN implies a revolution in the
way networks are designed, implemented and managed and requires
wholesale replacement of low level hardware. This has proved attrac-
tive for cloud players who have total control of the infrastructure that
they use. However SDN has faced barriers to adoption in the majority
of network installations where a complete replacement of hardware
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1.2 motivation

and software together with the retraining of staff and engineering
new interfaces to internet as a whole are significant.

Yet many of the issues surrounding network management in exist-
ing installation could be addressed by the application of methods that
are already widely understood in other domains such as computer
languages. For example the overall problem has been likened to the
programming of a distributed system. This approach has also been
pursued by researchers but with only limited success in adoption
by practitioners. One reason for these efforts not bearing fruit has
been the adoption of an input specification “language” that does not
adequately expresses or is sympathetic to the domain knowledge that
network engineers already use for design. In addition the internal
representation used in these research tools is not based on the appar-
ently natural choice of graphs. In addition research solutions often
only addressed a limited part of the design domain (such as the BGP
routing protocol), or the solution cannot handle the large range of
special cases that common arise in systems that have evolved from
low-level manual input.

Introducing a new approach to the industry for the design of net-
works starting from a high-level policy artefact and automatically
transforming this into router configurations that are compatible with
existing hardware is still an intensive task. Inevitably there is a need
to decide which parts of the process are of increased importance, such
that need to be addressed first and which parts can be introduced
later. Researchers have acknowledged this by identifying various
aspects of the overall task of network configuration management. In
particular it has been suggested network management has a static
design component and a dynamic update component. The static
design component is a good place to start changing process because
of the time scales are longer and it is not reliant on non standard APIs
and interface for real-time telemetry and monitoring of the dynamic
network state. It is argued that a good dynamic update process is
totally reliant on good abstractions and these abstractions are better
evaluated initially for the static design case. So the although work in
this thesis is limited to the static case, it is considered as an essential
foundation of a fully dynamic design update tool.

Given the objective stated above it is clear that any tool embodying
a new approach to high-level network policy configuration needs to
be trialled and evaluated by a wide range of practitioners. One way
that network engineers can experiment with a new approach is to
make it available in large scale simulation environments and to make
the source code available for industry contributions. This approach to
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1.3 background

validation of tools gives much greater confidence in their scalability
and flexibility in handling real life situations.

Whilst the future of network design is impossible to predict pre-
cisely it is clear that the future reliability expected of computer net-
works and the cost reduction expected in their design and mainte-
nance is unlikely to be achieved by the status quo. It seems likely
therefore that automated tools will play a much larger role in net-
work management in the future. This automation cannot ignore the
current installed based of hardware and software nor the skills and
knowledge of existing network engineers. It could be anticipated
that islands of automation may develop inside SDN style networks
but there is also a need to automate processes across such islands. It
is this research opportunity that this thesis aims to fulfil.

In the next section, we will provide a more detailed background to
some of these issues.

1.3 background

In 2001, the Internet Engineering Task Force (IETF) held a two day
meeting to discuss challenges in network management. This meeting
was summarised in RFC 3139 [89]. The Problem Statement from RFC
3139 is as follows:

Configuring large networks is becoming an increasingly diffi-
cult task. The problem intensifies as networks increase their
size, not only in terms of number of devices, but also with a
greater variety of devices, with each device having increasing
functionality and complexity. That is, networks are getting
more complex in multiple dimensions simultaneously (number
of devices, time scales for configuration, etc.) making the task
of configuring these more complex.

In the past, configuring a network device has been a three step
process. The network operator, engineer or entity responsible
for the network created a model of the network and its ex-
pected behavior. Next, this (model + expected behavior) was
formalised and recorded in the form of high-level policies. Fi-
nally, these policies were then translated into device-local con-
figurations and provisioned into each network device for en-
forcement.

Any high-level policy changes (changes in the network topol-
ogy and/or its expected behavior) needed to be translated and
provisioned to all network devices affected by the change.

In this model, network operators or engineers functioned as
configuration data translators; they translated the high-level
policies to device-local configuration data. (Sanchez et al. [89])
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1.3.1 Network Management Challenges

Why do these problems occur? Network configuration is complex.
Configuring a network by manually configuring the individual net-

work devices has been likened to programming in distributed assem-
bly language [60] [34].

[16] identifies key features of the configuration management prob-
lem: the high degree of configurability, where routers provide many
configuration option; the fact that routers are configured using “com-
plex, low-level” languages, and the rapid rate at which features are
added to routers. The process of manual configuration is both expen-
sive and error-prone [16].

Network science lacks the formal rigidity found in other disciplines
of Computer Science [95]. The development of high-level abstractions
to represent networks will allow more formal methods to be intro-
duced to networks.

Configuring networks device by device reduces thinking to be in
terms of implementation, rather than the high-level design or ar-
chitecture goal. There are a vast array of protocols and protocol
configuration options. This is one of the key contributors to the
complexity of device configuration [16].

1.3.2 Network Requirements

Modern networks are more commonly large in size: a service provider
network can contain thousands of devices [21]. These devices each
have configuration files ranging from hundreds to thousands of lines
of low-level configuration syntax [21]. These configuration files de-
scribe not only individual device setup, but the role the device plays
in services distributed across the network. This is a critical problem:
it is not a problem of just configuring the device in isolation, but the
effect that its configuration has on the entire network. A change in a
single device could have network-wide impact [21].

Modern networks undergo rapid changes, both in network demands,
such as adding new customers or business features, and in new fea-
tures offered by network vendors, such as new protocols [31]. Further,
there are unplanned events: devices and links can fail. Dealing
with both planned and unplanned events is complex, yet timely re-
sponse is critical to deliver high-performance networks [21]. This
is further complicated when the network itself is the database: an
operator making an emergency fix for an unexpected outage may
unknowingly violate a high-level network design requirement. A
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change in a configuration on one device may violate the assumptions
made when a configuration on another device was written, leading
to unpredictable network effects [21].

[21] identifies two key requirements for network operators to meet:
correctness, where changes to the network should not cause any side-
effects in meeting their outcomes; and timeliness, where changes are
able to be implemented in a timely fashion. These requirements are
difficult to meet using manual systems, and become more difficult
as networks grow: manual configuration does not efficiently scale.
Production networks are continuously carrying traffic [20], increasing
the impact of any outage due to an upgrade or device failure.

As well as network availability being a core requirement, network
performance is becoming increasingly important [110]. Network man-
agement typically involves a human operator unifying and reconcil-
ing disparate information across multiple sources, which complicates
network troubleshooting [110]. These changes include adding new
customers, introducing new services or features, or upgrading hard-
ware [15].

Both equipment and protocols evolve — router operating system
upgrades are released, and extensions with new options are added to
protocols [16]. Additionally the operational goals of networks change
with evolving business requirements. [16]. Adding a new customer or
service may require co-ordination with many internal organisations
and systems within a service provider [31].

1.3.3 Configuration Files

Configuration files themselves are large: a 500-router network can
have over one million lines of configuration [34], and are implemented
in low-level, device-specific languages [31]. While networks and their
services are designed network-wide, at a high-level, it is generally up
to an operator to translate these high-level design rules into their low-
level mechanisms. This is complex, and error-prone. Not surprisingly,
problems can occur in this manual translation process: a survey using
the rcc [34] BGP analysis tool detected faults in the operator imple-
mentation of high-level designs into low-level configuration syntax.
These were due to the ambiguity in implementation: there is often
more than one way to realise the same policy; and that configuration
in a low-level language is often unintuitive [34]. Whereas a high-level
language allows design flexibility and expressiveness, implementing
using low-level syntax is obscure, complex, and provides many op-
portunities for mistakes [34].
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Configuration through low-level configuration files creates the po-
tential for inconsistencies both within a single device configuration,
and across configuration files in the network [35]. The router con-
figurations themselves consist of many “assembly language” com-
mands [16].

Networks are made up of multiple systems, and multiple proto-
cols [64], each of which typically has many tunable parameters [16].
This diversity complicates management tools: one operator’s defini-
tion of a correctly functioning network may differ to another’s, as
each network has specific requirements and design goals [64]. An
operator must co-ordinate the configuration of such a diverse range
of devices and protocols [29]. Additionally vendor-specific languages
differ in their implementation of the same feature, and there is often
multiple ways to implement a high-level objective [34].

Further, the inter-dependency of configuration parameters means
that changing one configuration parameter may lead to a complex
chain of subsequent effects — there are often implicit dependencies
between configuration parameters [29].

Network outages occur due to network misconfigurations, as de-
scribed in reports [49] [51], or lack of testing configurations [48].
Research papers have been published studying the occurrence of out-
ages, including [97] [69] [101] [47] [102]. These problems: large-
scale, low-level, and diversity, mean that manual configuration is
error-prone, time-consuming, and expensive [16]. They are also error-
prone: outages can violate contractual obligations, disrupt business
workflows, and cause delays in service establishment, delaying rev-
enues [31]. A single misconfiguration can take out a Wide-Area
Network’s control plane [42].

Once created, these method of procedure documents must be man-
ually applied, by an engineer carefully following them step-by-step.
This is a time consuming process, and liable to mis-interpretation:
even the most complete document cannot realistically cover all im-
plementation scenarios. Any ambiguities could be mis-interpreted by
the operator applying the design guidelines. Not all of these errors
are immediately obvious: some may remain latent in the network,
and only exposed in the event of an network event such as a device
failure, leading to a cascading series of problems. Without a canonical
network model it is difficult to verify field configurations.

Configuration data supplied from disparate sources is also prob-
lematic, in that it may not be complete, or remain accurate as the
network evolves [31].
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[31] provides a detailed motivation for an automated configu-
ration management system. Manual configuration is costly, time-
consuming and doesn’t scale. A lot of time and resources are invested
in documenting and interpreting network standards, and learning
the device-specific interfaces used to implement configuration. This
typically results in a model configuration, which is used to configure
subsequent network devices. Creating such a document is very time
consuming, taking many months, and expensive.

In this section we have shown the problems faced by network op-
erators, and the need for new approaches and tools that assist in the
network configuration management problem.

In the next section we describe how the work in this thesis aims to
address these issues.

1.4 structure of thesis

This thesis relates to the domain of network configuration, which is
the task of converting high-level business and technical requirements
into their concrete instantiation within a network device, such as a
router of switch. As discussed, this process often requires a number
of manual steps, introducing complexity and the risk of error.

The primary focus of this thesis is in bridging the gap between
network-wide policy specification, and low-level device configura-
tion. This is performed by introducing a set of abstractions that can
be composed into a toolchain. This toolchain enables to expression of
high-level network configuration policy to be automatically compiled
to the individual low-level device configurations.

The structure of the remaining chapters of the thesis is as follows:
Part I provides a background of the problem space and the method-

ology used in this thesis. Chapter 2 is a survey of related literature
in the field, from both the research community and industry. This
identifies the research gaps in existing solutions. Chapter 3 identifies
five research questions leading from these research gaps, and outlines
the methodology used to address these research questions.

Part II introduces the proposed solution with a detailed explana-
tion of the abstractions and transformations. Chapter 4 describes
the Network Whiteboard, used for describing the high-level policy;
and the Network View abstractions, which are used as the high-level
intermediate form. Chapter 5 describes the Design Functions which
are used to construct the Network Views. Chapter 6 describes the
Device Compilation step, which transforms the Network Views into
the low-level Device Configurations.
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Part III presents an implementation and evaluation of the proposed
solution. Chapter 7 describes an implementation of the system in
Python, which is then used for a number of Case Studies in Chapter 8.

In Part IV we describe future work to expand the approach de-
scribed further, in Chapter 9. Finally, in Chapter 10 we summarise
how the thesis has addressed the research questions identified in
Chapter 3.
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B A C K G R O U N D A N D M E T H O D O L O G Y



2
R E L AT E D W O R K

2.1 introduction

In this chapter we motivate the need to develop abstractions and tools
to improve the network management process, and survey existing
literature in this area. In the previous chapter we noted that config-
uration management was an important function in network design.
It was noted that configuration management consumed a large part
of the roles of network operators yet at the same time was prone to
errors and inconsistencies that caused downtime. We now explore
the various concepts and associated tools that have been proposed to
resolve the network configuration challenge. We conclude that there
remains scope for a comprehensive solution that addresses the signif-
icant facets of the network configuration problem. The organisation
of this section is described below.

In the first part we explain the scope of network configuration
management. In the following sections we elaborate on each stage in
the common workflow of network configuration management. These
stages are: high-level network policy, high-level topology dependant
network description, network wide configuration views, Network
View to device configuration translator and low-level configuration
deployment. Within the section describing each stage we explain the
abstraction and concepts which are covered by the stage and review
the various research contributions in the literature that relate to each
stage. Finally, we identify research opportunities that have yet to be
addressed.

2.2 chapter overview

This chapter is organised as follows. We first provide the background
and motivation for this thesis. We discuss the significant challenges
present in the network configuration management process. We next
provide an overview of alternative approaches to configuration man-
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agement, including the use of centralised controllers with current
network hardware, Clean-Slate and SDN approaches, and Autonomic
Networking. We then focus on solutions proposed for more effective
management of current network hardware and software infrastruc-
ture. We look at the need for high-level network management, and
survey existing literature in this area. We next identify the need for
an abstracted view of the network, and intermediate models, and
review work on this in the current literature. We then discuss a
template-based approach to transform the intermediate models into
low-level device configurations. Finally, we need a way to validate
the approach to network configuration management presented in this
thesis. To do so, we provide an overview of testbed and simulation
platforms that can be used to validate our approach.

2.3 scope of network configuration management

The Internet Engineering Task Force (IETF), has defined the network
configuration management problem as taking the inputs of high-level
(topology independent) network policies, desired and current net-
work topology and data concerning the current network status and
performance to manage a set of device configurations. In this thesis
we are concerned initially with that part of the network configura-
tion management task that involves the generation of new device
configurations from high-level network policy and network topology
descriptions. This is in contrast to the dynamic changes made to a
network once the new device configurations have been generated and
loaded onto the network devices. It should be noted that the current
status and performance of the network is a real-time dynamic set
of information, whereas the network policies and topology are more
static sources of information. Normally in designing new networks
or adding to existing networks the designers would only consider
the static information. Well-designed abstractions and transforma-
tions for static network design will however contribute significantly
to structuring any structuring a dynamic network design tool.

In RFC 3139, Sanchez et al. have suggested 15 requirements for
network configuration management. These are reproduced in full in
Appendix A. We reproduce the relevant points 1, 2, 3, and 14 below.

1 Provide means by which the behavior of the network can be
specified at a level of abstraction (network-wide configuration)
higher than a set of configuration information specific to indi-
vidual devices,
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2 Be capable of translating network-wide configurations into
device-local configuration. The identification of the relevant
subset of the network-wide policies to be down-loaded is ac-
cording to the capabilities of each device,

3 Be able to interpret device-local configuration, status and mon-
itoring information within the context of network-wide config-
urations,

14 Be flexible and extensible to accommodate future needs. Con-
figuration management data models are not fixed for all time
and are subject to evolution like any other management data
model. It is therefore necessary to anticipate that changes will
be needed, but it is not possible to anticipate what those changes
might be. Such changes could be to the configuration data
model, supporting message types, data types, etc., and to pro-
vide mechanisms that can deal with these changes effectively
without causing inter-operability problems or having to replace/up-
date large amounts of fielded networking devices, (Sanchez et
al. [89])

We denote these requirements as IR:1–15. The work presented in
this thesis only addresses requirements IR–1, IR–2, IR–3, and IR–
14. The remainder of this literature review will focus on these re-
quirements. Requirements IR–4 to IR–13 and IR–15 are primarily
directed at the low-level mechanics of monitoring and provisioning
of a network, or dynamic modifications, and are thus not considered
in this thesis. We note that recent work such as in NETCONF [32]
make contributions to address these requirements.

RFC 3139 proposed a workflow for network configuration manage-
ment as shown in Figure 2.1. It might be expected that since this
workflow was proposed more than 14 years ago that this high-level
approach would have been widely adopted and suitable tools had
been developed to support it. However as we shall show in this
chapter this is not necessarily the case.

There has been more recent research published on the general con-
cept of High-Level Network Configuration Policy, since RFC 3139 was
published. In general, this research supports the point of view of RFC
3139.

For example, Oppenheimer et al. [80] describe tools to ensure that
an operator’s mental model of a network configuration matches that
of the network itself. They describe the need for widely used generic
tools, where an operator can describe their intent in a high-level
manner, which can then be checked and appropriate configurations
generated. They state that that a GUI wrapper around existing tools
is not sufficient: the tools themselves need to be fundamentally ad-
vanced.
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Figure 2.1: Reproduction of Figure 2, Proposed model for configuring network
devices, from Sanchez et al. [89]

Indeed, in their proposal of the OpenConfig [38] project in 2015,
Google present “Model-driven network management”, with an intent-
based workflow shown in Figure 2.2. Their approach consists of three
data sources:

1. Topology: the network structure

2. Configuration: the configuration data structure and content

3. Telemetry: the monitoring data structure and attributes (Google
[38])
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Figure 2.2: Reproduction of “Intent-based configuration flow” from [38]

They note that the management plane has not kept pace with the
needs of network management, particularly in the areas of “propri-
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etary CLIs (command line interfaces) requiring scripts”; “imperative
and incremental configuration”, and a “lack of abstractions” [38].

Other researchers, Enck et al. [31] identify a number of require-
ments for a network management platform. It must support existing
configuration languages: care must be taken when defining gener-
alised abstractions, as they can introduce layers of interpretation be-
tween the specification and the actual device configuration. Network
operators often do not have the time or the inclination to learn new
abstractions, and instead enjoy greater efficiency working with the
native configuration interfaces of network devices — despite their
shortcomings [31].

Enck et al. have pointed out that practitioners are unlikely to adopt
languages and abstractions that are foreign to their day-to-day work.
However, Enck et al. suggest that one solution to this problem is
a description language that closely adheres to the low-level device
configuration language [31]. This could be viewed as the lowest-
common denominator solution. It does not solve the complexities
of the problem, or addresses the concerns raised in RFC 3139.

There are other researchers who have contributed ideas to the struc-
turing of the High-Level Network Configuration Policy.

Caldwell et al. have noted manual configuration is not a sound
basis for progress in the field. They note that often the only rep-
resentation of the network state is the configurations in the devices
themselves. Because this configuration is low-level, this inhibits au-
tomation and reasoning. Feldmann et al. [35] observe that the most
important lesson in creating a configuration management tool is the
structure of the software. Feldmann et al. also advocates a database-
driven solution.

Chen et al. [22] emphasise that finding the right level of abstrac-
tion is one of the biggest challenges in network management. Feam-
ster et al. recommend that the network should be configured using
a centralised, high-level language that directly represents the poli-
cies [34], and low-level mechanisms should be hidden from opera-
tors [34]. Banks [6] presents an industry point of view, noting that
just providing new APIs to existing low-level functions does solve
the network configuration management problem. Rather, we need
network-wide abstraction models. Beckett et al. [8] note that the se-
mantic mismatch between the high-level objectives and the low-level
configurations is a major contributor to network misconfigurations.

In conclusion, there is a consensus amongst research and industry
of the need for a change in the way in which network policy is defined
and implemented. Some researchers have noted that unless the new
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abstractions are adopted by industry practitioners, progress will be
slow. Any successful progress is likely to require advancements in
the representation of the network state.

In the next section, we structure our discussion of research con-
tributions around a layered taxonomy of descriptions, abstractions,
and transformations, which lead from the high-level policy to the
device configuration. These three layers we used in the taxonomy are
the High-Level Network Configuration Policy description language,
intermediate network representation, and the low-level device config-
uration state.

2.4 general comments about high-level network repre-
sentation

In discussing the remaining detailed research in the field, we have
introduced a taxonomy consisting of three layers, that represents the
transition from the high-level policy document to the low-level device
configurations.

In this section we describe how researchers have addressed the
problem of representing high-level policy and their approaches to
transforming these representations into a lower-level form. First, we
explore how researchers have provided details concerning this top
layer of abstraction. Then, we discuss how each of the proposed tools
has implemented these ideas, at this level of abstraction.

In this section we gather together various research contributions
that help to define what we mean by the top level of abstraction in our
taxonomy: the representation of High-Level Network Configuration
Policy.

In RFC 3139, Sanchez et al. suggest that high-level network (config-
uration) policy involves “the construction of a model of the network
and its expected behaviour” [89, Page 4]. However RFC 3139 does
not provide a detailed or prescriptive approach to how this model
might be achieved.

Freeman [37] suggests that network configuration management should
be divided between purely physical inventory and logical inventory.
In the area of logical inventory he suggest that policy is a combination
of conditions and actions that lead to router configurations. He calls
these “condition action based” abstractions.

Vanbever et al. [104, Page 1] refer to the network policy level as
high-level configuration objectives which are “design decisions made
by the architect about the organisation of the network”. We will
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discuss the details of Vanbever’s work in the section on NCGuard
that follows.

Chen et al. [20] suggest that high-level policies are a type of con-
straint “expressed independently from the authors of operation trans-
actions”. By operation transaction he means the low-level config-
uration of routers. Chen goes on to state that high-level policies
should be “considered declarative in that they describe what should
happen as opposed to how to enforce them during each network
operation”. As Chen’s proposed tool is more targeted at dynamic
network management than static network design, we do not discuss
it further in this review.

In describing high-level policy Narain [73] uses the term “end-to-
end requirements”. Narain suggests that a specification language
should be developed that specifies the policy (the end to end re-
quirements) of a network configuration. He gives as an example
of this natural language: “No gateway router in a statement COI
(community of interest) has a static route to a destination in a differ-
ent COI” By community of interest Narain means groups of devices
connected by VPNs. By using natural language, this approach may be
appealing to practitioners, but may be hard to transform into precise
configurations. Once a well-defined set of abstractions are developed
to represent network configuration policy, a natural-language based
description language could be built on top.

Elbadawi et al. [30] hint at high-level network policy by suggesting
the need of “building a system that allows network operators to
formalize requirements of Network Elements or service using high-
level abstractions”. We agree that high-level abstractions should be
easily understood by network practitioners.

Hinrichs et al. [46] point to the need for “a high-level declarative
language for expressing network-wide policies about a variety of
different management tasks within a single, cohesive framework”.
They propose the FML language in the context of a software defined
network which address the need for an authorisation language. We
agree that the objective is well-founded. But in this thesis we do not
address the domain of Software-Defined Networking.

Prakash et al. [86] describe how computer networks are governed
by high-level policies. These policies are derived from network-wide
requirements, and apply to many forms of networks, including “ISPs,
enterprise, datacenter, campus, and home networks”. They describe
how “these network policies primarily relate to connectivity, security
and performance, and dictate who can have access to what network
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resources”. These authors are correct in focussing on connectivity
should be the basis of a high-level abstraction. They also describe

Simple and intuitive: Anecdotally, we found that many network
admins and cloud tenants design their policies by drawing dia-
grams on whiteboards. We believe a policy abstraction must be
as simple as drawing diagrams similar to Fig.1(a), yet expres-
sive enough to capture their intents for diverse and dynamic
SDN, cloud and NFV applications with sophisticated service
chain requirements. (Prakash et al. [86])

While their work focusses on Software-Defined Networking, the
high-level goal of making policy abstraction as simple as drawing
diagrams could also be applied to conventional (non-SDN) network
design and configuration.

In their Metaconfiguration concept, Matuska et al. [67] outline an
approach that configures the “functions and attributes of the whole
network, rather than functions and attributes of individual devices”.
They describe this approach as resolving issues with inconsistencies,
as well as providing a basis for automation of routine tasks. They also
describe that working at this higher level avoids redundant informa-
tion repeated in multiple configurations, and of policy embodied in
the “silently assumed relations in the network”. By this the authors
mean that information described in a configuration is not always
explicit about the high-level policy it is realising. These observations
tend to support the point of view that the high-level description of the
network must be decoupled from the network device configurations.

Maltz et al. [66] also emphasises the need to escape from the domi-
nance of low-level device configuration as the foundation for network
descriptions:

Ultimately, we believe that researchers should not need to work
at the level of the configs themselves, but with a higher-level
representation that abstracts away the idiosyncrasies of particu-
lar configuration languages and exposes the critical information.
However, developing such a data model is an extremely difficult
task, one that must be driven and validated by examples of how
configurations are used in real networks. We see our work as
the first logical stepping stone to the creation of a high-level
representation of configuration data. (Maltz et al. [66])

In conclusion, in terms of the literature cited above an ideal high-
level network configuration policy is a logical inventory rather than a
physical inventory, incorporates decisions made by an architect about
the top level organisation of the network, is expressed independently
of the low-level configuration of routers, formalises requirements us-
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ing high-level abstractions in a declarative language that its natural
to network architects.

In the next part, we will review how a number of prominent tools
have addressed the representation of High-Level Network Configura-
tion Policy, and its transformation into lower-level artefacts.

2.5 existing tools for high-level configuration network

policy

There are number of prominent tools that have been presented in
research, that aim to show the way towards an improvement in net-
work design methodology. In this section we discuss how each of
these tools has approached the top-level abstraction of network pol-
icy, and where applicable, have defined its transformation into an
intermediate format.

2.5.1 PRESTO

PRESTO [31] is a system to automate network device configuration,
through the use of configlets — small configuration templates that
can be composed together to create a device configuration. These con-
figlets are written in a custom, general-purpose template language,
and can extract configuration parameters from either an internal database
or external systems. The PRESTO compiler combines these templates
and information sources to generate configurations suitable for de-
ployment to network devices. PRESTO has been designed to closely
correspond to the low-level device configurations used on the net-
work devices themselves, and generates complete device-native con-
figurations [31]. This contrasts to a number of other configuration
automation solutions, which only generate an appropriate configura-
tion model: they don’t then take the next step of generating the actual
device configurations.

The users of PRESTO can be classified into two groups: domain
experts, who setup the configuration services and options into active
templates, and provisioners, who combine these templates with data
from external sources to create the device configurations [31]. Config-
uration generation is initiated either by a network upgrade, or a cus-
tomer order. The input provided in these requests is augmented with
relevant supplementary external data, and an application-specific data
model that corresponds to the target service or device. This is used
to create a short-lived provisioning database, which roughly corre-
sponds to the Device-Local configuration model of [89]. The provi-
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sioning generator uses the information in this provisioning database,
together with the active templates to create complete device-native
configurations [31].

These configlets are able to programmatically import other tem-
plates or extract external data. This allows composition and dynamic
data importation, which provides flexibility to handle the wide vari-
ety of configuration scenarios encountered in network management.
One design feature of the PRESTO system is decoupling the design
specification and preparation of the configlets from the provisioning
step of combining the configlets with external data to generate device
configurations [31]. The abstraction used has allowed these tasks to
be separated.

The authors describe the PRESTO configuration language as a lan-
guage extension, build upon native configuration languages such as
Cisco IOS. By adopting this approach, the configlet templates can
leverage the designer’s knowledge of existing configuration syntax
and components. This could be further decomposed into areas of
expertise, where one designer may be familiar with interface design,
and another with BGP configuration. This is similar to modularity in
programming languages, where the programming tasks can be allo-
cated based on programmer skill-sets [31]. The use of parametrised
templates reduces the learning curve for operators, increases the trans-
parency of the configuration generation process, and simplifies the
work required to add support for a new platform or service.

The data model used is a relational database, whose schema, repre-
senting the model of the Network Elements, is designed by the same
domain experts who define the configlets [31]. This database serves
as a higher level of abstraction to represent the network structure and
configuration attributes.

While this approach offers flexibility, too much embedded logic can
complicate the templates, especially if complex logic is embedded
directly with vendor-specific low-level configuration syntax. This
reduces readability, and makes it difficult to reason about design
intent. There are also limitations to performing logic in this man-
ner, especially for configuration of network-wide components, which
require co-ordination across multiple device configurations.

Despite these limitations, the authors identify three key contribu-
tions of the configlet-based approach:

- Breaking down tasks into smaller templates simplifies both
creation and maintenance - It allows configuration design to be
divided into areas of configuration expertise - Re-usability is
encouraged, as configlets can be stored as libraries ( [31])
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Each of these three points has analogies to computer programming
where modular components, made possible by an abstraction, are
easier to program and maintain, allow for individual expertise, and
encourage code re-use.

The data model is stored as a database schema, where router prop-
erties are stored in table fields. This allows router properties to be
accessed as variables, and for peer router properties to be selected
using database queries. This is used as the provisioning database,
the short-lived intermediate database used as the information source
for the configuration templates.

This database application dependent, as each network has its own
requirements. Separate tables are used to store network properties
such as routers, and their interfaces, with database keys used to link
the two. The template language allows nesting and iteration, so that
interfaces can be configured [31]:

[INT:SELECT (*) FROM (WAN_INTERFACE) WHERE
(WAN_INTERFACE.HOSTNAME=<ROUTER.HOSTNAME>)]
interface serial0/<INT.SLOT>/<INT.PORT>
bandwidth <INT.BANDWIDTH>
ip address <INT.IP> <INT.MASK>
! [/INT]

Listing 2.1: Example template from Enck et al. [31]

Conditional logic is also supported, which enables configuration
components to be included based on boolean logic.

Data transformation is also an important component of configura-
tion generated. This can occur in the case of IP addresses, where the
network mask could either be expressed as /24 or as 255.255.255.0,
depending on the device syntax. PRESTO supports such transfor-
mations, along with operations such as simple arithmetic, substrings,
and regular expressions. These inline transformations can also com-
plicate the readability of the template. Recognising this, the authors
allow for blocks of code to be setup within a label scope, where the
results are “hidden” from the configuration. This can be used to
evaluate variables, ready to substitution into the templates.

Having the network model represented in a database however leads
to complexity. An alternative is to introduce an intermediate model,
which would allow logic operations to be performed in a standard
programming language, with the results propagated into the provi-
sioning database. The templates could then consist of simple decision
blocks (such as the presence of absence of a service), or iteration (such
as for configuring multiple interfaces). This would allow the design
logic to be decoupled from the low-level configuration generation.
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The templates used in PRESTO are unable to capture complex
operational tasks, especially those involving dynamic changes to net-
works, and are unable to be composed from other templates [22]. Ad-
ditionally PRESTO has limited support for checking network status,
and verification against high-level constraints [20].

The contribution of PRESTO to to High-Level Network Configura-
tion Policy is achieved through the data model or schema used in
its relational database. However the schemas are not declarative of
network policy and it is not clear how the schemas come into being.
They would appear to need manual construction from a network
policy document that is not part of the PRESTO tool. PRESTO papers
make reference to drawing information from external sources but
these are not well defined.

2.5.2 Metaconfiguration

Metaconfiguration [67] describes a network using metadata. It is used
to describe a network in order to automate configuration generation.
The metadata is broken into four categories: topology and addressing,
routing, filtering/firewalling, and other features.

This data is described using XML, according to a schema defined
using RelaxNG. These blocks of data are described as “templates”. It
should be noted that this definition of a template is different to that
used as the final step of a configuration generation process, where
templates are used to interpolate data into an output structure.

We briefly summarise these categories below. The Topology and
Addressing data describes the network topology, and the IP address-
ing prefixes. The topology describes the groups of nodes in the net-
work, and the links between them. Inheritance is used, so a property
set on a group of nodes will apply to all nodes in that group. This
helps to avoid redundancy. The IP addressing data describes how the
IP address space is divided up, and is used in the system to allocate
the specified IP address prefix to the links in the network. The routing
properties mirror those of the Netopeer [17] data schema, which is an
XML-based schema for describing router configuration data.

In our previous definition Section 2.4 of high-level network policy
we make reference to a logical inventory rather than a physical inven-
tory, decisions made by an architect about the top level organisation
of the network, expressed independently of the low level configura-
tion of routers, formalised requirements using high-level abstractions
in a declarative language that its natural to network architects.
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Metaconfiguration is a logical inventory, features decisions made
about top level organisation expressed independently of low level
router configuration. Thus Metaconfiguration has aspects of high-
level network policy but by using XML, it lacks a declarative language
that is natural to network architects.

2.5.3 COOLAID

COOLAID [21] uses a relational database schema as the basic defini-
tion language for the network. The choice of a database to represent
the topology and policy intent of a network means that complicated
queries are required to reason about the network. To make matters
more unnatural for network architects, the policies are expressed in
the Datalog rule based language. Much of the work on COOLAID
relates to the incremental dynamic changes to an existing network,
which solves a different problem to that of transforming High-Level
Network Configuration Policy into individual device configurations.

2.5.4 NCGuard

NCGuard [104] aims to introduce software engineering practices to
network engineering. It allows an operator to describe formal ob-
jects of their network, which are validated for network designs in
the tool. It allows high-level network objectives to be composed of
smaller, low-level network objectives. This models real-world con-
figurations, where a high-level network objective is realised through
the implementation of lower-level configuration statements across
multiple network devices, and across multiple protocols. NCGuard
breaks network design into two key components: a high-level de-
scription of the network configuration, and a set of design rules to
be automatically tested. The network is represented in a high-level
XML document. The high-level description allows network features
to be described once, avoiding repetition, and removing the chance of
repetition errors. Evaluation is performed on the XML model, using
the design patterns described in the following validation section. To
generate router configurations, the high-level XML model is trans-
formed to a low-level device model, suitable for transformation into
device configurations using XSLT stylesheets.

NCGuard achieves many of the requirements of a High-Level Net-
work Configuration Policy. It has a declarative language which ex-
presses the high-level network architecture, and this language is trans-
formable at high-level. NCGuard also provides an extensive set of
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validation tools. NCGuard needs additional efforts to make its XML-
based rules easily understood by the current network engineering
workforce. As we will show in Section 2.6 and Section 2.7, NCGuard
is less flexible when it comes to dealing with full variety of router
platforms currently implemented in industry. Adding new routers
involves both defining new transformations in XSLT, and domain
knowledge. It is not certain that these two skills are widely shared in
the engineering workforce.

NCGuard thus fulfils the role of a high-level network policy docu-
ment, although we again note that XML is not a language naturally
used and reasoned upon by network architects.

2.5.5 Model Finding and Constraint Programming

One approach to configuration is through model finding, where the
network and requirements are described, using a formal language,
with a solver finding a configuration model that satisfies the require-
ments. This allows high-level network requirements to be specified.
A requirement solver performs translation of high-level requirements
into a network model.

Using a declarative language to express requirements contrasts to
a policy-based language, where the transformation from specification
to configuration model must be programmed, with limited support
for verification or error diagnosis [72]. Procedural languages, such
as Python or Perl also require process of reasoning from high-level
requirements to be programmed [72]. If a configuration platform is
based on either a policy-based or procedural approach, then signifi-
cant effort must be invested to provide a framework for this transfor-
mation and reasoning process.

While a requirement solver approach simplifies the transformation
from high-level specification to a configuration model, the formal
language used to express such requirements can become challeng-
ing to specify and read, especially by current network practitioners.
Additionally the requirement solver itself can be a computationally
intensive process, if all possible configuration combinations are to be
enumerated. For instance, it required several hours, on a modern
PC, to find the configuration for an 8-site VPN network example
presented [72]. This is faster and reduces the likelihood of errors
over a manual approach, but may present scalability problems for
large networks. This approach preclude a real-time response to a
dynamic response to a network event, such as a failure, outage, or
even a planned upgrade.
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[72] presents a Requirement Solver, which uses the Alloy logical
system to perform the reasoning, which allows the specification of
object types, their attributes, and first-order logic constraints. Allow
performs the tasks of finding appropriate objects and attributes to
satisfy the logic constraints, which capture high-level network design
goals. This configuration synthesis provides an abstract network
model of objects and their attributes. This can then be converted
into device-specific syntax (this step, and the deployment to network
devices is not covered in the paper). The author provides a number
of typical requirements for the example of setting up a fault-tolerant
wide area virtual private network (VPN), including the IP address-
ing, routing, access, and the VPN itself. These components that
are difficult and error-prone to manually configure [72]. As well as
configuration synthesis, the Requirement Solver approach can also be
used for Requirement Verification. The authors provide an example
discussing packet reachability.

ConfigAssure [74] synthesises network configurations from a con-
figuration database of variables, and requirements, expressed as first-
order logic constraints. These are processed using a Requirement
Solver, generating a configuration model that is provably correct. One
problem with synthesis using constrained logic is the complexity of
model finding. This project improves on the Requirement Solver
previous work by one of the authors [72].

Declarative language approaches are also well-suited to configur-
ing existing networks, not just “greenfields” networks. A requirement
solver approach allows the existing configuration to be expressed as
a requirement, where the new configurations must preserve certain
features. For instance physical links between routers must remain the
same in the both the existing network, and the new model generated
by the requirement solver [72].

Model finding constraint based programming is able to express
high-level architecture and is strongly declarative. While declarative
languages offer provably correct solutions, the syntax to express net-
work requirements deviates from standard network operator imple-
mentation techniques. This may prove to be too steep a learning
curve: unless the user has prior experience with formal languages, it
may be time-consuming, or even error-prone to express network con-
figuration requirements in a formal language. Using this approach it
would be very difficult to derive alternative high-level views of the
network using transformation.

It is important to make such languages as user friendly as possible,
to encourage adoption. One approach mentioned in [72] is to use
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Alloy from a traditional programming language, however the author
does not provide details on the form that the configuration specifica-
tion language would take.

2.5.6 Configuration Semantic Model

Configuration Semantic Model (CSM) [29] provides a middle-level
abstraction to complement the NETCONF protocol [32]. NETCONF
provides a vendor-independent interface to install manipulate and
delete the configuration of network devices [32]. This allows a solu-
tion to work across a variety of network devices, but provides limited
support for high-level design and management [29].

CSM provides both a global view of configuration, and co-ordination
of configuring the inter-dependencies in network devices. It pro-
vides a multiple layer model, where each layer corresponds to an
abstraction of a network management task, and provides a high-level
specification language for network device, service, and system man-
agement. The framework allows multiple users to configure a net-
work, with designated management roles to limit access. By using
the NETCONF protocol, CSM can operate across network devices
from a number of vendors. CSM has been implemented in Erlang as
a system called NSConf.

CSM breaks automated configuration into two categories: static
configuration, which is the initial configuration if a new service is pro-
visioned, and dynamic configuration, where configuration changes
are performed in response to network events such as outages from
device failures. CSM focusses on automation of static configuration,
and provides a bridge between high-level specification and low-level
configurations — something that NETCONF does not provide [29].

CSM consists of a number of concepts, which is a set of attributes
and characterisations. CSM models network topology using device
and service concepts. The device concept represents a Network Ele-
ment to be configured: this could be a physical device, or a logical
element, such as an Autonomous System, and is represented using
a name, a parent, and classifications. CSM uses a high-level lan-
guage, Structured Configuration Language (SCL), a tree-structured
language, which allows formal specification of configurations as a set
of predicates. An example of the syntax to set the cost of the eth0

interface to 100 for three routers is reproduced from [29] below:

manage [r1, r2, r3]:ospf (.parent == as100) {
config default {

set interface {
set name "eth0"; set metric 100;
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} }}

Listing 2.2: Example template from Elbadawi et al. [29]

CSM describes the network architecture at a high-level. It is declar-
ative, in that it uses a version of first-order logic predicates to express
policies. There is no evidence provided that CSM can easily be trans-
formed to produce different high-level view of the network.

Formal logical descriptions of a network are unlikely to be suitable
for the current network engineering workforce. While the topology
description is more accessible, the formalisation of requirements re-
quires an understanding of formal logic, which is beyond the experi-
ence of most network operators.

2.5.7 Netopeer

Netopeer [62] Is a system that is used to configure routers in a manner
that is independent of the individual devices or vendors. It uses an
internal representation that is based on XML.

2.5.8 YANG Description Models

YANG is a data modelling language for the configuration and manip-
ulation of state data. This is used to manage router configurations
using the NETCONF protocol.

Layer 3 VPN Model

An example of the use of YANG is a data model describing a Layer 3

Provisioned VPN Service [63].
The interest in this model from the perspective of research into

High-Level Network Configuration management is that it confirms
the current interest (published December 2015) in the problem do-
main. Although the authors identify the need for transformation
from a high-level declarative model and low-level configuration, they
do not describe such a transformation. They also identify that the
low-level configuration may be performed using the command-line
interface (CLI).

This YANG model does not provide any implementation, as noted:

This model is not a configuration model to be used directly on
Network Elements. This model provides an abstracted view of
the Layer 3 IPVPN service configuration components. It will
be up to a management system to take this as an input and
use specific configurations models to configure the different
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Network Elements to deliver the service. How configuration
of Network Elements is done is out of scope of the document.
(Litkowski et al. [63])

The authors provide a more detailed summary of the aims of their
work as follows:

A typical usage is to use this model as an input for an orches-
tration layer who will be responsible to translate it to orches-
trated configuration of Network Elements who will be part of
the service. The Network Elements can be routers, but also
servers (like AAA), and not limited to these examples. The
configuration of Network Elements MAY be done by CLI, or by
NetConf/RestConf coupled with specific configuration YANG
data models (BGP, VRF, BFD ...) or any other way. (Litkowski
et al. [63])

We also note that this approach has components which are declar-
ative. The authors create the concept of a site, which consists of a
number of Network Elements. These sites can have roles, specified
by the network architect. The paper then goes on to describe how
such sites should be handled. This describes a design policy based
on this high-level site abstraction. The handling of these sites, include
establishing the VPNs, allocating resources, such as router identifiers,
and considerations for IP addressing and routing protocols.

The idealised network management system outlined by the authors
of these paper, therefore has a component that allows the user to
describe their network topology at an abstract level, and specify the
role of components of that network topology, such as sites. The
network management system then follows the set of prescribed rules
described in the document, to realise this policy, into a set of configu-
ration attributes. These configuration attributes are then transferred
to the individual network devices, using a variety of approaches, such
as command-line interface, or newer methods such as NETCONF/
YANG.

While YANG brings benefits in approaching the modelling of net-
work intent, it does not provide a framework to implement these
models.

2.5.9 Other Tools

There are others tools which specific aspects of High-Level Network
Configuration Policy. These focus on specific protocols such as BGP,
which differs to the broader challenge of representing High-Level
Network Configuration Policy.
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Nettle

Nettle [107] is a tool for BGP configuration. This is a domain-specific
embedded language for configuring BGP networks, embedded inside
the Haskell programming language. Nettle allows an operator to
describe BGP policies at a high-level, network-wide level of abstrac-
tion, that compiles down to existing platforms: the underlying net-
work infrastructure does not need to change. By raising the level
of abstraction, logical routing design is able to be separated from
implementation and hardware specific configurations, allowing the
operator to express policy in a platform independent manner.

As well as a policy description language, Nettle provides a com-
piler that translates BGP policies into router configurations. An im-
plementation is provided that supports the XORP routing platform.

Nettle is embedded within Haskell, a functional programming lan-
guage. This allows greater expressiveness, but requires familiarity
with Haskell syntax: like other less-common languages, this may
prove a significant barrier for operator adoption. Additionally, Nettle
does not provide support for policy verification. Finally, Nettle only
supports BGP policy. While BGP policy is a complex configuration
task, network configuration involves multiple protocols, notably IGPs
such as OSPF and IS-IS, which Nettle does not currently support. To
be a viable part of a management platform, the policy expressed us-
ing the Nettle description language would need to be integrated with
BGP verification tools, and inter-operate with tools to configure other
services. Despite these shortcomings, BGP policy is an important part
of network configuration, and Nettle offers many insights into BGP
policy description languages.

Since Nettle focuses on configuration of the BGP protocol, and
given this restriction it realises many of the desired properties of a
High-Level Network Configuration Policy. However it uses Haskell,
which is not widely used by network practitioners, and cannot be
transformed to other high-level Network Views, as it only deals with
one protocol.

Since it only has an implementation for the XORP platform it lacks
vendor-independence. Nettle thus is a specific tool to configure BGP
Policy for the XORP platform. This differs to the broader challenge
of capturing High-Level Network Configuration Policy.

Boehm

Boehm et al. [10] present a system for an autonomous system to
specify its routing policy for the BGP protocol, and then generate
the relevant device configurations. To do this they use a series of
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policy “atoms”, which are combined with a “network specification”.
Each entry is represented in XML. Like Nettle, the focus of this work
is on BGP policy specification, rather than a generalised approach to
network design and configuration.

Propane

Propane [8] is a language and a compiler to translate network-wide
objectives into low-level device configurations. It also has an em-
phasis on configuration of the BGP routing protocol. High-level ob-
jectives are expressed using regular expressions to specify network
paths. These are then translated into graph-based intermediate rep-
resentations, which are used to calculate paths through the network
topology that match the user constraints.

This work also focusses on the area of BGP policy, rather than the
broader task of network configuration. By narrowing the domain of
focus, a more specific expression language can be developed, which
allows deeper analysis than a generalised solution. This addresses
a different problem space than the compilation of generic high-level
network configuration designs into low-level configuration, and can
be viewed as a complementary approach to the work presented in
this thesis.

2.5.10 Conclusion

As a result of reviewing the various proposals for existing tools, we
note that the existing tools either do not provide a comprehensive
high-level declarative description language of the network, or do
so in a language that is not readily accessible to current network
practitioners.

Current tool proposals contain many creative ideas for improving
the state of the art of the network design experience, and include
pointers to methods which could be adopted. However none of
the currently existing tools have been able to draw these concepts
together into a simple coherent system.

In the next section we explore research contributions that address
the transformation of High-Level Network Configuration Policy into
Intermediate Forms.
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In this section we explore research that suggests the possibility of in-
termediate formats for Network Configuration, that are lower level in
abstraction than the High-Level Network Configuration Management
Policy representation, but higher level than the individual device-
specific configurations.

An analogy exists between such Intermediate Forms for network
configuration and the intermediate languages used in programming
language compiler technologies. Where possible we highlight re-
search contributions into the transformations from the high-level de-
scription of the network into these intermediate forms.

This intermediate step concerns the “Network-Wide Configuration
Data” section of Figure 2.3. Intermediate Network Forms are the
data structure used at this step. The input to the intermediate stage
of the compilation is the high-level network policy artefact. This
corresponds to the “Configuration Management Data (High-Level
Policies)” of Figure 2.3.

Configuration 
Management Data 
(High-level Policies)

Network Wide 
Configuration 

Data

Network 
Topology 

Information

Network 
Status/

performance 
Information

Configuration 
Data 

Translator(s)

Device 
Local 

Conf(1)

Device 
Local 

Conf(2)

Device 
Local 

Conf(3)

Device 
Local 

Conf(4)

Figure 2.3: Reproduction of Figure 2, Proposed model for configuring network
devices, from Sanchez et al. [89]

This section is organised as follows. We first make some general
comments about what constitutes the intermediate network form. We
then review existing research tools, with a focus on how they propose
to handle the intermediate forms, and relevant transformations.
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2.6.1 General Comments about Intermediate Forms

For many approaches, the Intermediate Forms are not explicitly sep-
arated.

There are many different methods through which Intermediate
Forms can be represented. Forms that have been used by the tools
referred to in this section include:

• XML [104]

• an SQL database [9] [10] [21] [31]

• Comma Separated Value text files [91] [92]

• The YAML markup language [96]

• Perl hash tables [35]

• internal formats used in constraint-based programming [72].

In addition to the wide variability of languages used for represen-
tation, there is no consistent approach to the underlying schema and
associated transformations of intermediate forms.

2.6.2 PRESTO

PRESTO [31] is a system to automate network device configuration,
through the use of configlets — small configuration templates that
can be composed together to create a device configuration. Despite
their name, PRESTO templates are general and perform the role of
both intermediate representation and code generation functions at
the same time.

The PRESTO schemas are reflective of network policy, but do not
directly represent it. They can thus be described as an intermedi-
ate format. In terms of the structure shown in Figure 2.3, PRESTO
emphasises the “Configuration Data Translator”, as compared to the
“Network Wide Configuration Data”. Rather than performing trans-
formations on the Intermediate Representation, PRESTO uses low-
level configlets to directly generate device configurations. This does
not address the analysis and reasoning of the Intermediate Represen-
tations.

2.6.3 Metaconfiguration

Metaconfiguration [67] describes a network using metadata. It is
used to describe a network in order to automate configuration gen-
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eration. As previously noted, this metadata is broken into four cat-
egories: topology and addressing, routing, filtering/firewalling, and
other features. We interpret these categories to be representations of
an intermediate form. This is one of the positive contribution that
Metaconfiguration has made. However, these intermediate forms in
Metaconfiguration are expressed as XML documents, which are tree
structured. This is at odds with the natural structuring of networks
using graphs. We have previously noted that Metaconfiguration lacks
an over-arching declarative description of the network, at a level of
abstraction above these categories. This limits the reasoning and
transformation of the intermediate forms.

2.6.4 COOLAID

COOLAID [21] does not reveal how it converts the database repre-
senting the high-level network policy into device configurations. The
authors hint at progressive refinement of a minimally configured set
of routers but the details are now explained. Hence it is not possible
to compare the intermediate or low level steps of COOLAID with
the structure suggested in Figure 2.3, specifically as it addresses the
management of dynamic changes to run-time networks.

2.6.5 NCGuard

NCGuard [104] aims to introduce software engineering practices to
network engineering. It allows an operator to describe formal objects
of their network, which are validated for network designs in the tool.

NCGuard compiles its high-level representation into manufactur-
ers configurations using a two step process with a single intermediate
representation. NCGuard has separate XML-based descriptions of
the network configuration, and as an intermediate format. This al-
lows the use of XSLT to define transformations. A major contribution
of NCGuard is the recognition of the need for a formal intermedi-
ate form in the process of developing a network configuration tool.
The deficiency of XML as a language for describing a graph-based
network in a tree-based structure also applies to NCGuard.

2.6.6 Model Finding and Constraint Programming

Model finding [72] uses first-order logic to define high-level network
policy requirements. The authors claim that this enables high-level
network tasks to be performed including synthesis. By synthesis
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the authors really mean composing partial formal models of parts
of the network into a more complete model of the network. However
the authors note that the SAT solver used to service the synthesised
device configurations is NP-complete and whether a solution is found
may depend on the way the original requirements are written.

The authors have spend some effort in explaining how to write
requirements that can be synthesised. In common with all first-order
logic formalisms there is no way to be sure that the requirements are
complete. The authors do not attempt “synthesise” right down to
device configurations and thus have no way to cope with variations
between manufacturers devices. Despite their power, formal meth-
ods are not the natural language of network architects. The authors
acknowledge this to some extent because they often have to use topol-
ogy diagrams to explain the construction of these requirements.

If model finding and constraint programming have an intermediate
form, it is hidden inside their tool framework. This is reflected in
the fact that these approaches do not allow any synthesis of device
configurations.

2.6.7 Configuration Semantic Model

Configuration Semantic Model (CSM) [29] expresses high-level net-
work policies using formal logic. CSM has no clearly defined inter-
mediate form. This reflects the fact that CSM is a one-step translation
from a high-level model to NETCONF. The transformations use al-
gorithms based on Binary Decision Diagrams. This is not a natural
approach used by network operators, and would require translation
steps to be accessible to network operators.

2.6.8 Other Approaches

Industry

Industry approaches tend to be pragmatic and built from the bottom
up. One example of an approach used in industry is Ansible, as
presented by Lewis et al. [61]. This approach describes using the
Ansible framework to automatically generate configurations using
templates to be pushed out to the target devices.

In the presentation by Lewis et al., some key aspects of Ansible are
outlined. These include:
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• Playbooks, which specify a series of actions to perform, includ-
ing the generation of configurations using templates. Sets of
actions can be broken up into separate play books.

• Inventory, which is a set of specific data They can be passed to
a playbook.

• Roles, which allow breaking functions of the network into com-
mon categories. The example provided is a set of roles for
Routers is set of roles switches.

We note that in their presentation, the authors describe that there
are lots of different ways to structure the intermediate data which
is used for the configurations generation step. They note that one
approach could be using roles, another using inventory, or another
using global group and host variables. The recommendation is that
the best approach depends on the individual situation.

We note there may not be a common industry approach to the
intermediate representation of the network.

Oswalt emphases the importance of intermediate forms:

So what’s the missing link with all of this material? It comes
back around to the DevOps methodology. Configurations should
not only be created as templates, but their very existence should
be version controlled and be the point of authority. Having
the data structured separately [i.e an intermediate form] allows
for all sorts of external systems to participate in the workflow.
From provisioning new systems to modifying existing ones, the
data can be independently verified. Keeping both the templates
and data in source control also create unparalleled accountabil-
ity. The process of tracking changes over time becomes trivial
— and the dreaded middle of the night troubleshooting session
becomes that much easier. (Oswalt [81])

Nettle

Nettle [107] for BGP configuration. This is a domain-specific em-
bedded language for configuring BGP networks, embedded inside
the Haskell programming language. Nettle allows an operator to
describe BGP policies at a high-level, network-wide level of abstrac-
tion, that compiles down to existing platforms: the underlying net-
work infrastructure does not need to change. By raising the level
of abstraction, logical routing design is able to be separated from
implementation and hardware specific configurations, allowing the
operator to express policy in a platform independent manner.
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Boehm

Boehm et al. [10] does not provide details of an intermediate model
between the XML specifications and the “configurator” to generate
the route configlets, by briefly describing the use of an SQL database.

Automated Provisioning of BGP Customers

In their work on Automated Provisioning of BGP Customers, Gottlieb
et al. [41] describe an approach for BGP configuration based on SQL
tables for the high-level specification and intermediate models. They
make use of SQL queries to extract the information from these tables
to build the individual device configurations using templates. We
note the complexity of such an approach for the typical network prac-
titioner. An example of such an SQL query is shown in Listing 2.3.
SELECT Customer.AS_number,
Customer.Description,
Customer.Geographic_location,
Inventory.Router,
Inventory.Location,
Link.Interface,
SUBSTR(IP_prefixes.prefix, 1, INSTR(IP_prefixes.prefix, ’ . ’, 1, 3) ---1)

|| ’.’ ||
TO_CHAR(TO_NUMBER(SUBSTR(IP_prefixes.prefix,
INSTR(IP_prefixes.prefix, ’ . ’, 1, 3) + 1)) + 1),

Link.Packet_filter_ID,
DECODE(BGP_session.Loopback_IP_address, ’ ’,
SUBSTR(IP_prefixes.prefix, 1, INSTR(IP_prefixes.prefix, ’ . ’, 1, 3) --

-1) || ’.’ ||
TO_CHAR(TO_NUMBER(SUBSTR(IP_prefixes.prefix,
INSTR(IP_prefixes.prefix, ’ . ’, 1, 3) + 1)) + 2),
BGP_session.Loopback_IP_address),
BGP_session.Route_filter_ID,
BGP_session.Inbound_route_map,
BGP_session.Outbound_route_map,
BGP_session.#_of_intermediate_devices,
DECODE(BGP_session.#_of_intermediate_devices, ’0 ’, ’ ’, ’Loopback0 ’),
BGP_session.Default_originate,
BGP_session.BGP_keep_alive_timer,
BGP_session.BGP_holder_timer

FROM BGP_session, IP_prefixes, Customer, Inventory, Link, Assignment
WHERE Customer.AS_number = ’6431 ’
AND Customer.Customer_ID = Assignment.Customer_ID
AND Assignment.Session_ID = BGP_session.Session_ID
AND Assignment.Router = Inventory.Router
AND Assignment.Router = Link.Router
AND Assignment.Interface = Link.Interface
AND Link.Prefix_ID = IP_Prefixes.Prefix_ID

Listing 2.3: Example of a template from Gottlieb et al. [41]

2.6.9 Graph Representations

An important consideration at the intermediate level is what interme-
diate representation or form should be used. Surprisingly, the natural
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intermediate form for networking, has not been widely investigated
as a possible intermediate form in tools. In this section we review
the graph theory that is relevant to its use in network, in particular in
intermediate representations.

Graphs have previously been used in specific solutions for network
configuration, including in rcc [34], representing iBGP relationships,
where nodes represented routers in a graph, and edges the sessions,
and in shadowed subgraphs. Lauer et al. point out that:

People naturally treat networks as graphs, whether they are
writing software to implement network-based services, provi-
sioning VPNs, or trying to figure out how to implement BGP
policies. (Lauer et al. [59])

Zegura et al. support this point of view:

Graphs are commonly used to model the structure of inter-
networks, for the study of problems ranging from routing to
resource reservation. (Zegura et al. [112])

McClurg et al. have also emphasised the use of graphs:

a network can be thought of as a graph with switches as nodes
and links as edges (McClurg et al. [68])

Finally, Sung et al. illustrate how useful graphs can be in the
abstraction of network topology:

Network topology: We abstract the network topology as a graph
G. H denotes the the set of end-hosts. S denotes the set of
switches, i.e., devices that are capable of performing layer-2
switching. We let R denote the set of routers, i.e., the subset of
switches that are also capable of performing layer-3 routing. E
denotes the set of edges. Two vertices are connected by an edge
in if they are physically connected in the underlying network.
(Sung et al. [98])

The use of graphs in industry is discussed by Caldwell et al. [16],
in their summary of the non-disclosed EDGE system. In their work
they discuss how graphs can be used for visualising a network in
particular grouping by various attributes such as the AS number the
BGP, or the area for OSPF. They also discuss how graph compres-
sion agreements can be used to reduce the amount of information
presented by grouping by common features such as geographical co-
located devices in a Point-of-Presence (PoP).

All of the above quotations refer to tools or approaches that target
a specific subdomain of networking. They have not applied graphs to
the general problem of High-Level Network Configuration Manage-
ment.
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In the talk “The Future of Networking, and the Past of Protocols”
given at the Open Networking Summit in 2011, Shenker [95] dis-
cusses the fundamental ideas behind Software Defined Networking.
He notes that SDN requires three key abstractions: a Distributed
State Abstraction, a Specification Abstraction, and a Forwarding Ab-
straction. As our work focusses on existing network equipment and
protocols, we cannot redefine the forwarding abstraction. However
Shenker notes that the Distributed State Abstraction, an annotated
network graph is a natural choice.

2.6.10 Conclusion

From our discussion and review above, we can identify that whilst
intermediate formats are crucial to a systematic structuring of net-
work configuration tools, they have not been treated as first-class
entities in most of the published tools. In fact, current tools could
be as contributing to fragmentation of the intermediate forms, as
suggesting approaches in many different formats, such as XML, CSV,
and SQL databases.

Graphs have been identified as a natural fit for intermediate forms,
however there are no comprehensive tools that use graphs in this
way. A graph-based tool would offer many advantages in presenting
a natural abstraction and leverage the formality of graph theory for
the transformation steps that are used in the network design process.
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In this section we discuss the literature relating to the lowest level
of the IETF workflow. This is the “Configuration Data Translator(s)”
component of Figure 2.1 to produce the Device Local Configurations.
This section is structured as follows. We first review templates which
are widely used in practice, and have been adopted by many of the
research tools. Then we describe how transformations have been used
to translate templates into device configurations.

2.7.1 Templates

Many network engineers are focused on the final commands that
must be entered into a particular router to achieve the intent of the
high-level network configuration. However there are many issues sur-
round this command line interface that lead to network failures and
misconfigurations. These have been previously discussed in the moti-
vation chapter. The reasons for difficulties with the final commands is
that they are device specific, often have inconsistent, confusing, and
position-dependent syntax. A commonly adopted strategy to reduce
the difficulty of creating commands is templating [9].

Through a transformation templates can be used to create the device-
specific commands for router configuration. The nature and complex-
ity of the template itself and inputs to the templating process varies
widely amongst published tools. For example in PRESTO a template
is a script which accesses a database of network inventory, performs
filtering, processing, and verification operations before generating the
final output commands. A sample PRESTO template is shown in
Listing 2.4.

%% Configure Back-to-Back Interface to Peer Router
[INCLUDE FROM (B2B) WHERE (B2B.TYPE=<ROUTER.B2B_TYPE>)] %% Define the BGP

configuration
router bgp <ROUTER.LOCAL_ASN>
network <ROUTER.LOOPBACK0> mask 255.255.255.255
[PEER:SELECT FROM (ROUTER) WHERE (ROUTER.HOSTNAME=<ROUTER.PEER>)]
%% Ensure the peer is in the same network
[EVAL B2B_CHECK noprint]
[COND WRONGNET ("<ROUTER.B2BNET:computeOffsetMaskIP(<ROUTER.B2B_IP>,0)>"

\
ne "<PEER.B2BNET:computeOffsetMaskIP(<PEER.B2B_IP>,0)>" ) ] <ROUTER.

WARNING:templateWarning(<ROUTER.HOSTNAME> and <PEER.HOSTNAME>
different B2B Net)> [/WRONGNET]

[/B2B_CHECK]
network <PEER.NETIP:computeOffsetMaskIP(<PEER.B2B_IP>,0)> mask

255.255.255.252 neighbor <PEER.B2B_IP> remote-as <ROUTER.LOCAL_ASN>
neighbor <PEER.B2B_IP> next-hop-self
[/PEER]
[WAN:SELECT FROM (WAN) WHERE (WAN.HOSTNAME=<ROUTER.HOSTNAME>)]
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network <WAN.NETIP:computeOffsetMaskIP(<WAN.IP>,0)> mask <WAN.MASK:
computeMask(<WAN.IP>)> %% The gateway is the second IP in the subnet
(for this example)

neighbor <WAN.GW:computeOffsetMaskIP(<WAN.IP>,1)> remote-as <WAN.REMOTE_

ASN> [/WAN]
no auto-summary
!

Listing 2.4: Example of a template from PRESTO, taken from Enck et al. [31]

There is a very wide diversity in the way that templates have been
conceived and implemented. Google uses a simple templating pro-
cess. “Configurations [“Commands”] are templates with [just] vari-
able substitution” [39]. Microsoft have a concept of “configlets” which
appear to be midway in complexity between the PRESTO and Google
approach [90]. NTT’s approach is also intermediate between these
two extremes [70]

Arnoldus et al. [4] note that the literature does not provide a formal
definition of a template. They cite an informal definition from, which
defines a template as “an output document with embedded actions
which are evaluated when rendering the template”.

Template-based solutions have been presented at industry confer-
ences, such as the North American Network Operators Group (NANOG).
In these presentations templates are designated for code generation
within a Development Operations (DevOps) framework such as An-
sible [3]. The Netomata Configuration Generation system, an open-
source framework, combines a network inventory model and tem-
plates to generate device and service configurations [18]. Templates
are also used in industry to build XML configurations for NETCONF,
such as in the Kipper project [106]. Thus is could be argued that
templates are the only abstract concept that both researchers and
practitioners in the field of network configuration management agree
on. What is not always agreed on is the level of abstraction and
complexity for which the template is designed.

Templates have been widely studied in the computer science do-
main. Parr [82] has promoted principles that which aim to enhance
the separation of concerns in templating:

Unrestricted templates are extremely powerful, but there is a
direct relationship between a template’s power and its ability to
entangle model and view (Parr [82])

Parr has listed five constraints that he considers are essential to
maintaining separation of concerns in templates. In Parr’s explana-
tion of constraints, the view is the template, and the model is a data
source, from which the template draws information.
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1. the view (template) cannot modify the model either by di-
rectly altering model data objects or by invoking methods on
the model that cause side-effects. That is, a template can access
data from the model and invoke methods, but such references
must be side-effect free.

2. the view (template) cannot perform computations upon de-
pendent data values because the computations may change in
the future and they should be neatly encapsulated in the model
in any case.

3. the view (template) cannot compare dependent data values,
but can test the properties of data such as presence/absence or
length of a multi-valued data value.

4. the view (template) cannot make data type assumptions.

5. data from the model must not contain display or layout
information. (Parr [82])

In the context of networking, the model could be viewed as an
inventory of network assets. To illustrate these constraints in the
context of networking will now the use of templates in PRESTO in
relation to these constraints.

PRESTO performs complex transformations in the template on data
from the (network) model. This breaches constraint number 2. This
is fundamental to the construction of PRESTO. The approach used
by NCGuard [104] uses XSLT templates to generate device command
configurations, does not breach these constraints.

In summary, templates have been shown to be a widely useful
approach by both practitioners and researchers. However to better
promote a systematic approach to High-Level Network Configuration
Management, it would be advisable for tool designers to pay closer
attention to the way in which templates are used, in particular to
ensure that they contribute to the separation of concerns between
intermediate forms and device configurations.

2.7.2 Transformation

The final step in the low-level device configurations process is trans-
formation of intermediate forms and templates to generate device
configurations. In this section we review the different approaches
that have been suggested for this step.

If templates are defined according to the principles outlined by
Parr, then the transformation step could be considered to become
almost trivial. The major challenge for the transformation stage is
the wide diversity and irregularity of device configuration syntax
and semantics. Therefore it is important that the transformation
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association with template itself is kept simple, as it is unlikely that
the final code generation step will ever be very simple.

Arnoldus et al. [4] provide an overview of a typical transformation,
shown below as figure Figure 2.4, where input data refers to some
type of intermediate form.

Input Data

Template

Template Evaluator Generated Code

Figure 2.4: Reproduction of Figure 1.12 Template based generator from [4]

With NCGuard, Vanbever et al. [104] use XSLT style sheets to trans-
form an XML model of the device configurations into. The relative
complexity of XSLT could be a concern for adoption by practitioners.

By increasing the rigour on the intermediate forms, it should be
possible to reduce the pressure on the templating system to do too
many different and disparate tasks. This frees the templating transfor-
mation to be mostly syntactic. No one in the literature has explored
this direction in detail.

DFA/Petri-Net

The DFA/Petri-Net approach is intended to formally define the work-
flow of network configuration in response to changes in the configu-
ration. This makes no contribution to high-level architecture. This fol-
lows on from the Business Process/Method of Procedure approach.

2.7.3 Conclusion

In this section we have reviewed the lower levels of a proposed com-
pilation hierarchy between High Level Network Configuration Policy
and device configurations.

We have shown that templating is one of the most widely accepted
approaches between researchers and practice. However we have noted
that because of the deficiencies of intermediate forms used by many
tools, much complexity has been transferred to the templating step.
When added to the complexity of syntax and semantics of the device
configuration languages, it has made many approaches unwieldy. No
tool has effectively proposed a separation of concerns between a well-
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constructed intermediate form and a simplified template. It seems
likely that this approach could simplify both the intermediate form
and the template. This would leave the templating step to follow
well-established computer science principles.

2.8 summary

Based on our survey of related work, we identify the following re-
search gaps:

1. There is insufficient separation of concerns between low level
configurations and high-level policy design objectives.

2. Whilst networks are inherently graph based the internal repre-
sentations of current research and industry approaches are not
strongly based on graph theory.

3. Where compilation is attempted from high-level policy to low
level configuration the process is not well structured. Well es-
tablished principles derived from other domains where com-
pilation is required are not widely adopted in the networking
domain.

4. The languages used for the input of policy design objectives is
not expressed in language that would be readily adopted by the
current practitioners

5. Many tools published do not provide a comprehensive solution
for the implementation of high-level network configuration pol-
icy.

We will address these gaps in the next chapter, where we will
present our Research Methodology.
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2.9 network testbeds

In this section we briefly review the infrastructure that has been
created to enable networking tools and concepts to be prototyped
and evaluated in non-production environments. There are three ways
to construct such testbeds. These are simulation, emulation, and
hardware testbeds. Here we provide a brief overview of some of
the well-known testbeds.

By hardware testbeds, we mean using physical routers as the basis
for the experiments. Three examples of hardware testbeds are Router-
farm [1], shadow networks [19], PlanetLab [23]. The main appeal of a
hardware testbed is their fidelity. The main disadvantage is the cost
and likely access restrictions.

An alternative is simulation. Simulation typically focuses on one
specific aspect of the routing process, such as C-BGP [88]. However
simulation usually avoids the detail of individual device configura-
tions, yet these configurations are the endpoint for many tools. There
are many network simulation tools in existence.

The third alternative is emulation, where the operating system of a
physical network device is run in a virtual environment. This ensures
device-level realism, but allows for a more flexible deployment in
terms of scale and wiring of the devices. Because this approach
uses the same operating system as production devices, it also uses
the same configuration syntax. This affords a useful environment to
test configuration generation tools. Examples of emulations include
Emulab [45], Mininet [58], Junosphere [50], VIRL [79] and Netkit [84].

Mininet is focussed on OpenFlow-based SDN experimentation. Juno-
sphere is a commercial product from Juniper. Junosphere has been
used for research [7]. VIRL (Virtual Internet Routing Lab) is compa-
rable product from Cisco. Netkit is an open-source project.

Netkit is an attractive choice as it is open-source, and is respected
in the research community as it has been used for both teaching and
research. It is based on the open-source Quagga [87] router. Quagga
is a well-established project that provides functionality comparable
to commercial router operating systems. A disadvantage of Netkit
is the lack of diversity of use of commercial operating systems such
as those from vendors such as Cisco or Juniper. A comprehensive
evaluation of such a network configuration generation tool would
require evaluation against commercial network operating systems.
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2.10 conclusion

In this chapter we have reviewed the research relating to the process
of transforming High-Level Network Configuration Policy descrip-
tions into low-level device configurations.

When considering High-Level Network Configuration Policy de-
scriptions, we noted that no tool provides a declarative description
language for policy which is also readily accessible to current com-
puter network professionals.

Most tools propose some sort of new abstractions, however the
systematic layering of these abstractions is not well-handled by most
of the proposals in the literature. In particular, there has been insuf-
ficient attention applied to formalising the intermediate forms. This
has had serious consequences for many of the tools proposed in the
literature, and has led to fragmentation of the abstractions used.

For example, some intermediate forms have attempted to express
high-level policy, and other intermediate forms have lacked general-
ity, forcing added complexity into the templating step.

Whilst graphs are a natural fit for networking, they have not been
seriously considered as the basis for a generalised intermediate form.

While templating is the only methodology widely accepted by both
researchers and practitioners, in many cases deficiencies in other parts
of the tools have meant that too much has been asked of the templat-
ing step, complicating its transformations.

In summary, whilst current tool proposals contain many interest-
ing ideas for improving the way network policy is transformed into
device configurations, no current proposal has drawn these concepts
together in a compelling way, that may have real impact on the way
that data networks are designed and managed.

In the next chapter we present a research methodology which aims
to address this deficiency.
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3
R E S E A R C H M E T H O D O L O G Y A N D O V E RV I E W

3.1 introduction

In the previous chapter it was shown that there are significant gaps
in the research literature and industry practice reading the expression
and use of high-level network configuration policy to systematically
generate low-level device configurations. A summary of these gaps
are stated below and in this thesis research contributions are made to
address them.

1. There is insufficient separation of concerns between low level
configurations and high-level policy design objectives.

2. Whilst networks are inherently graph based the internal repre-
sentations of current research and industry approaches are not
strongly based on graph theory.

3. Where compilation is attempted from high-level policy to low
level configuration the process is not well structured. Well es-
tablished principles derived from other domains where com-
pilation is required are not widely adopted in the networking
domain.

4. The languages used for the input of policy design objectives is
not expressed in language that would be readily adopted by the
current practitioners

5. Many tools published do not provide a comprehensive solution
for the implementation of high-level network configuration pol-
icy.
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3.2 research questions

The following research questions are based on the work of Shaw [94],
which presents a characterisation of research strategies for conduct-
ing research in software engineering. These identify a series of types
of questions, and a series of validation methodologies that can be
used to validate the questions. We use these categorisations to classify
our question type, strategy, and validation methods below.

The research questions addressed in this thesis are follows:

Question 1 Is there a declarative representation of High-
Level Network Policy that is also likely to be
widely adoptable by current network practi-
tioners?

Question Type Feasibility

Strategy Technique

Validation Implementation

Question 2 What is a better intermediate representation of
network configuration that is based on graph
theory, supports a well structured compilation
process and provides clear separation of con-
cerns?

Question Type What is a better way to do X?

Strategy System

Validation Evaluation

Question 3 How can declarative High-Level Network Pol-
icy descriptions be transformed into a graph-
based intermediate format using a compiler
that is extensible in terms of new types of
policies and new protocols.

Question Type What is a better way to do X?

Strategy System

Validation Evaluation
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3.3 research methodology

Question 4 How can the configurations for a diversity of
network devices be generated systematically
from a graph based intermediate representa-
tion?

Question Type Method means. How can we do X?

Strategy Technique

Validation Implementation

Question 5 What are the scalability and extensibility char-
acteristics for the compilation of High-Level
Network Configuration Policy to device config-
urations in terms of network size and diversity
of network protocols and target devices?

Question Type Characterisation

Strategy Empirical

Validation Experience/Evaluation

3.3 research methodology

For each research question we have identified a strategy for answer-
ing it and a means of validating the result.

Question 1: The strategy for answering this question is to construct
a system which incorporates the new proposed declarative high-level
policy representation. The validation involves making a tool based
on the proposed representation widely available to industry practi-
tioners and observe adoption rates.

Question 2: The strategy for answering this question is to construct
a system (tool) which incorporates the proposed intermediate format.
The validation will be to establish if the format can support a wide
range of high level network policies and low level devices at scale.

Question 3: The strategy for answering this question is to construct
an instance of a compiler that performs the transformation. The
validation will be a successful implementation.

Question 4: The strategy for answering this question is to construct
an instance of a code generator that is capable of configuring a wide
range of network devices. The validation is to be obtained through
emulation of significant sized networks with a significant range of
devices from a significant range of protocol expressed in the interme-
diate representation.
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3.4 scope of thesis

Question 5: The strategy for answering this question is to use the
complete tool instance incorporating all the design concepts and ab-
straction to build a range of networks as case studies. The case studies
would encompass scale in both number of network nodes and range
of policies and protocols. The validation is carried out by checking for
correct packet routing and inspection of each devices routing tables.
The tool has also been validated through testing performed by a large
cohort of practitioners who will provide informal experience reports
and testimonials.

3.4 scope of thesis

This thesis is concerned with network configuration, with an em-
phasis on a methdology to express high-level network-wide config-
uration requirements which can then be transformed into low-level
device configurations.

One of the main contributions of the thesis is in developing these
generalised abstractions and transformations, which can be used as
building blocks for common network configuration tasks. While we
provide a number of examples of network configuration tasks, the
contribution is in the abstractions and transformations rather than
the artefact produced. In this thesis we will discuss the process of
generating device configurations for a greenfields network. In the
future work section we discuss how the work of this thesis could
be further developed with existing research, to address an existing
brownfields network, and to handle on-going run-time management.
The automated configuration of a greenfields network is a precursor
to on-going network management of an existing network.

The methodology developed in this thesis can be implemented
using a modular toolchain. While our toolchain incorporates the
generation of low-level device configurations using an intermediate
representation, the modular architecture allows for other approaches
to be substituted. This allows our high-level approach to specifica-
tion and transformation to be incorporated with existing research
for generation device-level configurations. Our approach could be
used to model the inter-device configuration parameters, which are
then passed to the intra-device configuration tools. In this thesis we
use a case-study of a Small Internet topology, taken from a teaching
scenario, which reflects many of the configuration tasks involved
in real-world network configuration. This is used as an illustrative
example. We expand this example with a series of case studies, to
demonstrate the flexibility of our approach. Finally, in the Future
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Work chapter we present a series of possible future directions to
further develop our approach.

3.5 discussion of configuration generation process

We will aim to build the toolchain shown in Figure 3.1. To do this
we first need to build the theory for each of the components of the
toolchain. From there we can construct a reference implementation
and use this for our experimentation process.

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Template
Assembler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

Figure 3.1: Flowchart of toolchain for configuration generation

We will aim to reproduce the Netkit topology described in [84]
which provides a realistic network topology based on a number of
inter-connected networks. We will reproduce this for the Netkit testbed
platform, allowing us to verify the correctness of the generated con-
figurations. Our approach should provide the network and device
abstractions described by Shenker [95], and have the property that
f(model) = configurations described in industry talks such as Google [39]
or Shenker [95]. We would like our approach to fit within the work-
flow of network practitioners, providing transparency into the inter-
nal operations, such as by visualisation of the network model, and
presentation of the device model in a format that is readily under-
standable by a network practitioner.

We will use the general approach outlined in RFC 3139 [89] and
reproduced in Figure 3.2. We will seek to combine this with language
compiler theory, in particular its use of intermediate representations
and transformations of these intermediate representations.

3.5.1 Abstractions

We first need to develop the appropriate abstractions to represent the
input specification and the various network topologies. We denote
these as the Network Whiteboard and the Abstract Network Model.
The Abstract Network Model consists of Network Views which repre-
sent network topologies, such as for routing protocol designs. These
are shown in Figure 3.3.
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Figure 3.2: Reproduction of Figure 2, Proposed model for configuring network
devices, from Sanchez et al. [89]

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Template
Assembler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

Figure 3.3: Flowchart of configuration generation toolchain, showing the
role of the Network Whiteboard and Abstract Network Model
abstractions
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3.5 discussion of configuration generation process

We would like the input specification to be as simple as the com-
mon practice of drawing policy requirements on whiteboards as de-
scribed by Prakash et al. [86].

As discussed in the literature survey, there are hints in literature
that graphs are a natural abstraction. However we will need to deter-
mine the appropriate level of representation: what do the nodes and
edges represent? Graphs consist of nodes and edges: how can we
represent interfaces? Finally, networks typically consist of multiple
different protocols and topologies: what is the appropriate level of
abstraction to capture this different topologies in a systematic man-
ner?

Finally, how can we systematically capture network information
such as IP addresses, interface names, or routing protocol metrics
such as OSPF costs?

3.5.2 Transformations

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Template
Assembler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

Figure 3.4: Flowchart of configuration generation toolchain, showing the
role of the Design Functions

We then need to develop the appropriate transformations that can
transform the Network Whiteboard input specification into the Net-
work Views that comprise the Abstract Network Model. These are
denoted as Design Functions in our toolchain, as shown in Figure 3.4.

We would like these transformations to be readily understood by
network practitioners, and implementable in a common program-
ming language. While the graph theory details are not often taught to
network practitioners, we can build a series of primitives that capture
common elements of network designs. These primitives can be com-
posed to build functions for the various network design tasks. These
functions operate on the abstractions, these steps can be decoupled,
enabling one network practitioner can write the transformations and
another to provide the Network Whiteboard as the input. This sep-
aration of concerns allows individual expertise in specific domains,
and independent extensibility of the design functions.
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3.5 discussion of configuration generation process

3.5.3 Low-Level Configuration Generation

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Template
Assembler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

Figure 3.5: Flowchart of configuration generation toolchain, showing the
role of the Compiler

Finally we need to develop the workflow for taking the Abstract
Network Model intermediate representation, and building the low-
level device configurations. This is done through the use of two
compilers: a Platform Compiler and a Device Compiler. The Platform
Compiler is responsible for mapping the hardware inventory, such as
interface naming and hardware-specific information, into the Interme-
diate Hardware Model. The Device Compiler combines the logical
inventory information from the Abstract Network Model with the
Intermediate Hardware Model, to produce the Intermediate Device
Model. This contains all of the configuration information needed
for the specific device. There is an entry in the Intermediate Device
Model for each device in the network that is to be configured. The
final step is to assemble the device entry in the Intermediate Device
Model with one or more templates to generate the final device con-
figuration in the appropriate low-level syntax. These are shown in
Figure 3.5. This step concludes the toolchain.

3.5.4 Implementation

We will verify the correctness of the configurations generated by our
approach using an experiment-based approach as shown in the ex-
tended toolchain in Figure 3.6.

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Template
Assembler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

Run on
Testbed Results Analyse ResultsCollect

Results

Figure 3.6: Experimentation verification process
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3.6 complete methodology

We will first implement our theoretical approach in a widely used
programming language. For assistance in debugging and to provide
insight into the design process, we will develop an automated visu-
alisation system to display the intermediate network-wide represen-
tations of the Network Views. We will use this implementation to
reproduce the Netkit Small Internet topology. To test extensibility we
reproduce an enterprise network with vlans and managed switches,
and to test scalability we will use our implementation to configure a
large scale network with over one thousand devices. We will use our
abstractions and toolchain to assist in analysis, such as post process-
ing raw data to map the IP Addresses to their corresponding network
devices and interfaces. We will use the implementation to generate
configurations for devices run on different testbed environments, fur-
ther demonstrating the extensibility of the approach.

3.6 complete methodology

Our full methodology is shown in Figure 3.7. The High-Level Net-
work Configuration policy is first expressed on the Network White-
board. A series of Design Functions transform the Network White-
board into a series of Network Views to form the Abstract Network
Model, which contains the network logical inventory. The Network
Views can be visualised with an automated visualisation engine.

The Platform Compiler uses the Network Whiteboard to build the
Intermediate Hardware Model, which contains the physical inven-
tory of the network devices, such as interface names. The Platform
Compiler can also produce the Intermediate Platform Model, con-
taining information on how to configure the testbed, such as setting
up virtual devices and connecting them together. The Device Com-
piler takes the Abstract Network Model and Intermediate Hardware
Model, and builds the Intermediate Device model, which contains
the configuration information for each device in the network. The
Template Assembler combines this Intermediate Device Model with
simple templates to produce the final Device Configurations. If nec-
essary a template can be used to produce the Platform Configuration.

We then launch the simulation testbed with the Device Configura-
tions and Platform Configurations. This provides a running network
using the specification provided on the Network Whiteboard. We
collect diagnostic information from this running network to enable
us to verify the network has been correctly configured.

We demonstrate this methodology for our implementation in Chap-
ter 7 and will vary components, such as the Design Functions, Com-
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3.7 conclusion

pilers, or Testbed for the case studies in Chapter 8. This allows us
to demonstrate the extensibility and scalability of our approach and
toolchain, and to provide verification of these variations.
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Figure 3.7: Implementation and Verification Methodology used in this thesis

3.7 conclusion

In this chapter we have presented the five research questions that
are addressed in this thesis. We have also provided a strategy for
answering these question and identified how the result of the research
strategy will be validated. In the next chapter we present a more
detailed example of the toolchain, and then a detailed description
of our key abstractions: the declarative high-level network policy
representation, called the Network Whiteboard and the intermediate
representation, the Abstract Network Model, comprised of Network
Views.
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4
S P E C I F I C AT I O N A N D R E P R E S E N TAT I O N U S I N G
N E T W O R K V I E W S

4.1 introduction

In the previous chapter we provided an overview of our research
methodology and our toolchain. In this chapter we present the fun-
damental abstractions from which our network modelling language
is constructed. These abstractions are used for the high-level specifi-
cation language, and for the network-wide design transformations.

Network configuration involves configuring individual network de-
vices. This configuration on each device has network-wide context:
the configuration state of an individual device in the network is de-
pendent of the configuration of other devices in the network. As
discussed in previous chapters, the task of network configuration
is one of distributing the configuration state to each device in the
network, to describe the functionality of the device in the network
context.

In traditional networks, the configuration state of each device is
represented in low-level configuration files, using a syntax and se-
mantics that vary depending on the vendor of the network device.
Together, each of the device configurations form the network. These
device configurations are used to implement a desired network-wide
state. This network-wide state in turn is used to implement high-level
business or technical goals. In this chapter we will develop a series of
abstractions which can help to automate this process: the capturing
of high-level goals and the transformation of these to a network-wide
model. In this chapter we present these abstractions, with the next
chapter discussion the transformations of the Network Whiteboard
abstraction into the Network Views, which can then be subsequently
transformed into the target device configurations.

In this chapter we will show how the Network Whiteboard abstrac-
tion addresses Research Question 1: Is there a declarative representation
of High-Level Network Policy that is also likely to be widely adoptable by
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4.2 chapter overview

current network practitioners?, and the Network Views abstraction ad-
dresses Research Question 2: What is a better intermediate representation
of network configuration that is based on graph theory, supports a well
structured compilation process and provides clear separation of concerns?

4.2 chapter overview

This chapter describes the overall toolchain used in our approach,
and then focusses on the Network Whiteboard abstraction used for
describing the high-level policy; and the Network View abstractions
which are used as the high-level intermediate form. This chapter is
organised as follows. We first provide a simplified example of the
overall toolchain. We then introduce the key concepts involved in the
Network Whiteboard and Network View abstractions.

From there we expand this example to show how the Network
Whiteboard and Network View abstractions can be used to repre-
sent a more complicated topology of fourteen routers organised into
seven autonomous systems. We show the use of the Network View
abstraction to represent the relationships of the Physical and Layer
2 connectivity, IP addressing, and the OSPF, iBGP and eBGP routing
protocols.

We then discuss the implementation details of the Network White-
board and Network View abstractions. We provide an overview of
the key components of the implementation, with additional detail
provided in the appendices.
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4.3 overview of approach and toolchain

In this section we provide an informal overview of our approach to
introduce the key components in the tool chain. A simplified view of
the toolchain is shown in Figure 4.1. We use this simplified view to
explain the general concepts. At the end of this section, we will revisit
the complete toolchain which we have shown in previous chapters.

Input
Description Transformations Network

Model Device Compiler Template
Assembler

Device
Models Device Configs

Figure 4.1: Simplified toolchain flowchart

4.3.1 House Topology

The topology that we use for this example, is based on a five router
“house” network topology, as shown in Figure 4.2. We will use this
topology to illustrate a number of aspects of the network design pro-
cess, including various routing protocols, and IP address allocation.
This topology contains two autonomous systems, which represent
different network entities, such as different companies or Internet
Service Providers. The four routers on the left belong to autonomous
system 1, and the right-most router belongs to autonomous system
number 2. We use this classification when we design the routing
protocols configuration.

Autonomous System 1 Autonomous System 2

r4

r1 r2eth0

r3

r5

eth1

eth0

eth1

eth1

eth2

eth0

eth2

eth1

eth0eth1

eth0

eth0

Figure 4.2: House example topology.
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4.3.2 Network Topologies

We now provide an overview of the various “views” of the network
configurations can arise from this house topology example. This
includes the physical wiring of the devices, the IP addresses allocated
to the interfaces of the devices, and the various designs for the routing
protocols. These “views” could be constructed by a network practi-
tioner, based on a description of the network topology and a set of
design rules. The views correspond to the diagrams used to describe
networks, such as in network textbooks, or in diagrams constructed
by network operators in diagramming tools such as Microsoft Visio.
Our views are based on graphs, where the nodes correspond to the
network devices, and the links between these nodes correspond to the
connectivity implied by the view. For instance on the physical view,
the links would represent physical connectivity, such as a wire. On
the OSPF view, a link would represent an adjacency configured in the
OSPF routing protocol. We also allow for interfaces to be specified at
each end of the link. Finally, we allow for nodes, links, and interfaces,
to be labelled, which allows us to specify information such as a node
or interface name, or an interface IP address.

These views are decoupled from the specific implementation in the
configuration of the network device. A network practitioner could
take the information contained in these network views, and manually
create the configuration for each device on the network.

4.3.3 Input Topology

The first step is to describe the network topology and key information,
such as the autonomous system numbers. We do this by labelling the
devices in the input topology. This labelled input description is then
used to build the various network topologies. An example of the
original topology, with the devices labelled with their autonomous
system number, is shown in Figure 4.3.

4.3.4 Physical Network Topology

The Physical Network view shows the devices and the wiring be-
tween them, and is shown in Figure 4.4. It can be derived simply
from the input topology specification.
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Figure 4.3: Input description with labelled devices.

r4

r1 r2eth0

r3

r5

eth1

eth0

eth1

eth1

eth2

eth0

eth2

eth1

eth0eth1

eth0

eth0

Figure 4.4: Physical Network Topology.
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4.3.5 IP Address Network Topology

The IP address topology is shown in Figure 4.5. Here, we have
labelled each of the interfaces with an IP address, and each of the
nodes with a loopback IP address.

10.0.0.4

10.0.0.1 10.0.0.2192.168.0.2

10.0.0.3

10.0.1.1

192.168.0.5

192.168.0.6

192.168.0.17

192.168.0.14

192.168.0.21

192.168.0.22

192.168.0.13

192.168.0.18

eth0192.168.0.9

192.168.0.1

192.168.0.10

Figure 4.5: IP Address Network Topology with loopback addresses on
devices and infrastructure addresses on interfaces.

4.3.6 OSPF Network Topology

OSPF is a protocol that is used to share network information within
an autonomous system. Therefore, the links in the topology shown in
Figure 4.6 are only between devices in the same autonomous system.
This can be constructed from the input topology, by simply removing
the links between routers in different autonomous systems.

In this example we have extended the idea of labelling interfaces,
and use this to carry further specifications about the OSPF network
design. OSPF allows for a network to be broken up into smaller
regions, known as “areas”. It also allows for a metric to be specified
in an interface, which is used to influence the shortest path algorithm
used when finding the optimal route to a destination IP address. This
metric is known as a “cost”. In the topology shown in Figure 4.6,
the interface labels are a tuple of (“area”, “cost”). This allows more
detailed information to be provided to the configuration process. We
also mark the area for the loopback interface of the router in the tuple
on the router. We use the area 0 for all of the physical and loopback
interfaces in this example.
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Figure 4.6: OSPF Network Topology.

4.3.7 eBGP Network Topology

BGP is the Border Gateway Protocol, and is used to share routing
information between autonomous systems. We first look at the topol-
ogy for eBGP, the exterior Border Gateway Protocol. eBGP is used
to establish BGP sessions between routers that belong to different
autonomous systems. For our house example, this can be derived
by retaining the links that connect routers in different autonomous
systems. This is essentially the inverse of the step used to construct
the OSPF network topology. This topology is shown in Figure 4.7.
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Figure 4.7: eBGP Network Topology.
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4.3.8 iBGP Network Topology

iBGP is interior BGP, and is used to share eBGP information into an
autonomous system. For our example, this will allow the routers r1
and r3, on the left of the diagram, to hear the information learnt by r4
and r2 over their eBGP session to r5. This would allow us to be able
to successfully ping from r1 or r3 to r5. There are many methods to
construct the iBGP topology, which we discuss Here we use a simple
full-mesh, where each router iBGP peers to the other routers in the
same autonomous system, as shown in Figure 4.8. This simple full-
mesh design means we do not consider the physical links from the
input specification, and only considers the node labels.

r4

r1 r2

r3

r5

Figure 4.8: iBGP Network Topology.

4.3.9 Layer 2 Network Topology

The final network topology which we look at is for Layer 2. By
Layer 2 we mean the Data Link Layer of the OSI reference model,
and can be useful in modelling hub and switch network devices. As
we will show in this thesis, this can be used to derive connectivity
to build the other topologies. Our house input topology simply
consists of direct point-to-point links between routers, so the layer
topology shown in Figure 4.9 reflects the physical topology, with a
virtual “device” introduced to represent the broadcast domain of each
point-to-point link. This broadcast domain concept is represented by
the diamond symbol. It provides an abstraction which we develop
further in this thesis to incorporate network devices at different levels
of functionality.
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Figure 4.9: Layer 2 Network Topology.

4.3.10 Network Model

We can then construct a network model, which is the set of all of
these network topologies. An example of such a network model is
shown in Figure 4.10. This is used as the input to the configuration
generation process.
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Figure 4.10: Network Model consisting of each Network Topology
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4.3.11 Design Process

We now provide a brief overview of the design process, which trans-
forms the high-level representation into each of these various network
topologies. The input description topology is transformed into each
of the network topologies. An overview of this transformation step is
shown in Figure 4.11. We will discuss these transformations in detail
in Chapter 5.
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Figure 4.11: Creating Network Topology from Input Topology

4.3.12 Device Compilation Process
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Figure 4.12: Compiling Device Model from Network Model

The next step is to build the individual device configurations. We
do this using a second intermediate representation. As shown in
Figure 4.12 we first apply a device compiler which maps the relevant
information about each device, from each of the network topologies,
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into a device model. This device model contains the key information
required to generate the device configurations. An example of such
a device model for an idealised target device for r4 is shown in List-
ing 4.1. While network operator could transcribe the information in
this device model into low-level device configurations, we automate
this process using templates.
{
"asn": 1,
"bgp": {
"ebgp_neighbors": [
{ "asn": 2, "ip": "192.168.0.22" }

],
"ibgp_neighbors": [
{ "asn": 1, "ip": "10.0.0.1" },
{ "asn": 1, "ip": "10.0.0.2" },
{ "asn": 1, "ip": "10.0.0.3", }

],
"networks": ["10.0.0.0/24", "192.168.0.0/24"]

},
"hostname": "r4",
"interfaces": [
{ "id": "eth0", "ip": "192.168.0.10/30" },
{ "id": "eth1", "ip": "192.168.0.18/30" },
{ "id": "eth2", "ip": "192.168.0.21/30" },
{ "id": "lo", "ip": "10.0.0.4/32", }

],
"ospf": {
"interfaces": [
{ "cost": 5, "id": "eth0" },
{ "cost": 10, "id": "eth1" }

],
"networks": [
{ "area": 0, "network": "10.0.0.4/32" },
{ "area": 0, "network": "192.168.0.8/30" },
{ "area": 0, "network": "192.168.0.16/30" }

]
}

}

Listing 4.1: Example device model for r4

4.3.13 Configuration Assembly Process

We automate the process of assembling device models into configu-
rations by using templates. The Template Assembler combines the
device model with simple templates to produce low-level device con-
figuration syntax for the target devices. This process is shown in
Figure 4.13. We provide more details of this process in Chapter 6.
An example of the output configuration for r4 for a simplified device
configuration is shown in Listing 4.2.
!
hostname r4
!
interface eth0
ip address 192.168.0.10/30
ip ospf cost 5

interface eth1
ip address 192.168.0.18/30
ip ospf cost 10

interface eth2
ip address 192.168.0.21/30
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Figure 4.13: Configuration Assembly: Device Model and Templates

interface lo
ip address 10.0.0.4/32

!
router ospf
network 10.0.0.4/32 area 0
network 192.168.0.8/30 area 0
network 192.168.0.16/30 area 1

!
router bgp 1
network 10.0.0.0/24
network 192.168.0.0/24
!
neighbor 10.0.0.1 remote-as 1
neighbor 10.0.0.2 remote-as 1
neighbor 10.0.0.3 remote-as 1
!
neighbor 192.168.0.22 remote-as 2

!

Listing 4.2: Example router configuration for r4

4.3.14 Complete Toolchain

In Figure 4.14 we show the complete toolchain for our approach. This
uses the terminology used in this thesis. The Network Whiteboard
corresponds to the input topology discussed in this section. The
Abstract Network Model corresponds to the Network Model. This
consists of Network Views which represent the individual topologies
such as for IP Addressing, OSPF, or eBGP.

The Design Functions are used to transform the Network Whiteboard
into the Network Views of the Abstract Network Model. The Device Com-
piler compiles the Abstract Network Model into the Intermediate Device
Model for each device. These are then assembled with templates by
the Template Assembler to produce the Device Configurations.

To allow for the configurations to be verified using the various
testbed environments discussed in Section 2.9, our toolchain allows
for a Platform Compiler which maps the physical connectivity and
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any relevant labels from the Network Whiteboard into an Intermediate
Hardware Model. This can include device wiring information, interface
naming schemes, and out-of-band management information. This
Intermediate Hardware Model can be used as a supplementary input
to the Device Compiler.

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Template
Assembler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

Figure 4.14: Flowchart of toolchain

4.3.15 Conclusion

In this section we have provided a general overview of the key as-
pects of the toolchain used in our approach. We have shown how
an input topology, consisting of a labelled graph, can be used to
derive a number of network design related topologies through the
use of a transformation step. These network design related to policies
can then be compiled down to an abstract version of the syntax for
a target device, which can then be assembled using templates, to
produce a device configuration.

We now formalise the key elements of the labelled graph abstrac-
tion.
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4.4 network whiteboard and network views abstractions
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Figure 4.15: Overview of toolchain highlighting the Network Whiteboard
and Abstract Network Model

This section presents the key elements of our model to capture a
high-level description of the network design goals, and the interme-
diate network-wide abstraction. This is the Network Whiteboard and
Abstract Network Model components of the toolchain as shown in
Figure 4.15.

4.4.1 Specification and Representation

In this chapter we develop a set of network-level abstractions which
can be used for the specification and representation of network topolo-
gies. The specification allows the high-level network requirements to
be described in a declarative manner. This allows the capture of the
High-Level Network Configuration Policy, discussed in Section 2.4.
In our approach this specification model is referred to as the Network
Whiteboard. The abstractions also form the basis of intermediate
network models, which allows the manipulation and transformations
of the High-Level Network Configuration Policy into the lower-level
configurations. These intermediate representations are known as Net-
work Views in our approach. This forms the Intermediate Represen-
tation discussed in Section 2.6.

We now present the key concepts in the network-level abstraction,
and then show how these form the Network Whiteboard and the
Network Views.

4.4.2 Abstracted Network Topology Models

In this section we discuss the abstracted network topology models
which are used in our approach. These models are used for Network
Whiteboard, which is where the user provides the policy description,
and is also used for each of the Network Views, which represent the
various routing protocols to be configured.
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The topology model contains the Network Elements, Network Ele-
ment Connections, and Network Element Interfaces.

In addition, each of these elements are able to be labelled. A
system revolves around the construction Network Views based on
the Network Elements, and the connections, and the label set on
these and other Network Element Interfaces. By manipulating these
elements through successive filtering operations, and the creation
of connections based on the labels, we are able to capture the core
information required to describe the configuration of various routing
protocols in the network.

As will show in subsequent chapters, this description can then be
used to generate individual device configurations, which are logi-
cally consistent across a network wide view. In addition, working
with individual network protocols, this allows separation of concerns
and simplifies the construction and verification of individual network
protocol configurations. The core components of the Network White-
board and Network Views are shown in Figure 4.16.

NE NE
NEINEI NEC

Figure 4.16: Components used in both the Network Whiteboard and Net-
work Views: Network Elements (NE), Network Element Inter-
faces (NEI), and Network Element Connections (NEC).

Network Whiteboard

The network operator describes their specific network at a high-level,
capturing the network devices, their interconnections, and the roles
the devices play in the network. This is captured using a Network
Whiteboard abstraction. The Network Whiteboard consists of Net-
work Elements, which contain Network Element Interfaces. Network
Element Interfaces are connected by Network Element Connections.

Our Network Whiteboard abstraction aims to facilitate the goal
of “policy abstraction must be as simple as drawing diagrams” de-
scribed by Prakash et al. [86], and discussed in the Literature Survey
in Section 2.4. The Network Whiteboard is the highest level abstrac-
tion in our design process. It is the starting point for the design flow
shown in Figure 4.17.
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Network Whiteboard

r1 r2aa

sw1 r3

b

b a

a

Figure 4.17: Network Whiteboard, showing four Network Elements and
their Network Element Interfaces, and three Network Element
Connections between them. The Network Elements represent
three routers (r1, r2 and r3) and a switch (sw1).

Network View
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sw1 r3

b
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Figure 4.18: Network View, with the same elements as the Network White-
board shown in Figure 4.17
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Network Views

The Network Views enable the use of topologies to represent rela-
tionships between Network Elements, at various aspects of the con-
figuration process. A number of Design Functions transform the
Network Whiteboard into a series of Network Views. Network Views
are network-design focussed: each view represents a layer or “slice”
of the network design process. The Network Views capture the in-
formation about the role of a Network Element in the network. They
do not capture the internal structure of a device: this information
is provided to the Device Configuration process. An example of a
Network View is shown in Figure 4.18.

Abstract Network Model

The set of all Network Views is the Abstract Network Model, as
shown in Figure 4.19. The Network Whiteboard is not part of the
Abstract Network Model, but is used to derive the Network Views in
the Abstract Network Model.

Abstract Network Model

Network View

Network View

Network ViewNetwork View

Network View

Network View
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b

b a

a

Network View

Network View

r1 r2aa
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b

a

Network View

r1 r2xx

r3

y

x

p1

p2

Figure 4.19: An example Abstract Network Model containing multiple Net-
work Views.
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4.4.3 Network Devices

A Network Device is a component that receives and sends a data
packet, with or without processing. Examples of devices include
switches, routers, firewalls, and end-hosts such as servers. The ap-
proach can be extended to support other devices as required. A
Network Device is captured in two aspects in our approach. The
first is the high-level functionality, such as the type of device (router,
switch, server, etc), which is captured on the Network Whiteboard
and used in the Design Functions to create the Abstract Network
Model. This corresponds the logical inventory of a device, such as for
routing protocol configuration. The second aspect is specific device
parameters, such as the vendor, model number, and operating system
version, as well as hardware capabilities such as interface numbering
structure. These are captured as input to the device compilation step
to build the Intermediate Hardware Model, which corresponds to the
physical inventory of a device.

4.4.4 Network Elements

r1 r2aa

sw1 r3

b

b a

a

Figure 4.20: an Abstract Network Model showing Network Elements.

A Network Element is an abstraction of a Network Device, and are
shown in Figure 4.20. Network Elements also have a unique identifier,
which can be used to identify the Network Element across different
Network Views. This allows that topologies to be constructed for
various protocols, due to the relationship between the same set of
Network Elements. Network Elements can be annotated with labels
used to construct the Network Views. These labels can capture the
role and other information about of the Network Element.
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Role

The device type of a Network Element represents the role of the
Network Element, and is represented by a symbol, used on the Net-
work Whiteboard. An example of common symbols used is shown
in Figure 4.21. These shapes are a pseudo-label: they could be repre-
sented by a label chosen from an alphabet of available device types:
{router, switch, server, firewall, ...}.

Router Switch
Pseudo-Network

Element

Server

Figure 4.21: Symbols used to represent Network Element Roles

Network Element Labels

Labels can be applied to Network Element by the network designer.
These could be used to indicate membership of a group, such as an
autonomous system; a role within a topology such as an iBGP route
reflector; an IP address; or an OSPF area or cost. As we will show in
this thesis, labels provide a flexible approach to capture High-Level
Network Policy.

Pseudo Network Elements

r1 r2aa

r3

b

a

p1

p2

Figure 4.22: An Abstract Network Model containing Network Elements and
Pseudo Network Elements, with the Pseudo Network Elements
highlighted.

We previously introduced the concept and motivation for the Pseudo
Network Element in our Layer 2 Network Topology in the House
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example. Pseudo Network Elements are Network Elements which
do not correspond to a target physical device, and therefore do not
have a configuration generated for them. An example is shown in
Figure 4.22. “Normal” (physical) Network Elements are specified
on the Network Whiteboard, and are present in the Intermediate
Hardware Model. Pseudo Network Elements can be created in the
Network Views as part of the network design process. This was
demonstrated in the Layer 2 Network Topology of the House example.
They can also be used on the Network Whiteboard to capture virtual
or external connectivity, such as an aggregate of end hosts, or a third-
party network which is connected over a peering link.

The example in Figure 4.23 shows Pseudo Network Elements being
used to represent the broadcast domains in a Layer 2 Network View.
This simplifies the creation of the OSPF topology, where connections
are made if two Network Elements have a connection in the Layer 2

Network View. This extends the motivation presented in the Layer
2 Network View in the House topology example. Pseudo Network
Elements can also be used on the Network Whiteboard to represent
external devices which may not be necessarily under the specific
configuration of the configuration system, but may represent a part of
a configuration, such as an external network and its IP address, that
we wish to establish a connection to, as we will show in Chapter 8.

r1 r2sw1 sw2 sw3

r1 r2bc1

r1 r2

r3

r3

r3

bc2

a a b a b a b a b a

a a b a

a a b a

Network Whiteboard

Layer 2 Network View

OSPF Network View

Figure 4.23: Pseudo Network Element Example
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r1 r2aa

sw1 r3

b
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a

Figure 4.24: Abstract Network Model showing Network Element Connec-
tions.

4.4.5 Network Element Connections

Associations can be made between Network Elements, called Net-
work Element Connections. These are shown in Figure 4.24. These
can be bound to Network Element Interfaces. Network Element Con-
nections can also have labels associated with them.

4.4.6 Network Element Interfaces

r1
a blo0

sw1
a b

r2
alo0

r3
alo0

Figure 4.25: A conceptual representation of Network Element Interfaces
shown inside each Network Element.

A Network Element can have Network Element Interfaces. These
have labels such as whether or it is a physical or logical interface,
or whether it is management or data. A conceptual representation
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is shown in Figure 4.25. These also can have labels associated with
them.

Network Element Interface Bindings

r1 r2aa

sw1 r3
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b a

a

Figure 4.26: Network Element Interface Bindings
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(a) Network Element Interface Point-
ers: Binding a Network Element
Connection to a Network Element
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(b) Network Element Inter-
face Bindings: Binding
multiple Network Ele-
ment Connections to a
single Network Element
Interface.

Figure 4.27: Overview of Interface Pointers.

Network Element Interface bindings are shown in Figure 4.26, and
in more detail in Figure 4.27.
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We use bindings allows us to be free of storing attribute infor-
mation for the configuration itself, on the edges in our model. By
reducing the information stored on the edges to only connectivity
or information about the edge, we simplified working with Network
Element connections across different overlays.

As we will show in the Chapter 5, this simplifies constructing
Network Views from other Network Views, while retaining connec-
tivity. An example is a hub which connects multiple devices such
as routers together: at the Physical Network View each router is
directly wired to the hub. However in another Network View, such
as IP connectivity, each of these routers will act as if it has a direct
connection to the other routers connected to the hub. The IP connec-
tivity Network View would then have the routers directly connected
to each other. However we want to retain the interface on which they
connect, which is derived from their connectivity to the hub on the
Physical Network View. By storing a reference to the interface on the
Network Element Connection, we are able to retain this in advanced
design steps such as explode, split, and merge, which we will present
in the next chapter. The alternative approach is to store configura-
tion information on the Network Element Connection itself. This
approach becomes complex to reconcile information across Network
Views, especially when Network Element Connections have been split
or exploded using Design Functions.

Logical Network Element Interfaces

r1 r2xx

r3

y

x

Figure 4.28: Logical Network Element Interfaces

Physical Network Element Interfaces are added from the Network
Whiteboard, and used in the Intermediate Hardware Model. They
cannot be added after the Network Whiteboard has been read. Logi-
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cal Network Element Interfaces can be added at any time during the
design process. These can correspond to interfaces such as loopbacks
or tunnel endpoints, and are shown in Figure 4.28.

Association of Logical Interfaces

r1 r2xx
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y

x

a

b

a

a

Figure 4.29: Association of Logical Network Element Interfaces to Network
Element Interfaces

Logical interfaces do not map to a physical interface on the actual
physical device. These can be generalised to represent termination
points, such as for BGP sessions. For example, Logical Interface
Associations can be used to map a BGP session to a loopback or
physical interface. An example is shown in Figure 4.29.

4.4.7 Discussion

Identifiers

Network Element Interfaces have an identifier that is also unique
across all Network Views, as shown in Figure 4.30. Network Elements
are unique across all views; Network Element Interfaces are unique
within a Network Element across all views; and Network Element
Connections have scope within a Network View.

Consistency

As well as label verification using a system such as a schema, we can
also do structural consistency checks on a network. For instance you
may not be allowed to connect to network devices of the same role
together, or interfaces of different roles may not be used to establish
a connection between two Network Elements.
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Figure 4.30: Identifiers: Network Elements and Network Element Interfaces.
Network Element Identifiers are globally unique, and Network
Element Interface Identifiers have local scope to the Network El-
ement. A Network Element Interface can be uniquely identified
globally by the tuple of (Network Element, Network Element
Interface).

However for the Network Views the schema and consistency checks
are used to verify that the Design Rule is correct. The scope of the
Network Whiteboard is to provide information that can be used in
a sensible manner by the Design Functions, and so was bounded by
the Design Functions themselves, both for consistency, but also for the
values of the labels that are set on the elements. However, the output
of the Design Functions, which is the Network Views, is dependent
on what is consistent and logically correct from a networking body
of knowledge point of view. It is important the Network Views
expressed by the Design Functions, are able to be translated into
configurations that makes sense by the compilers. As compilers,
which we discuss in Chapter 6, do not perform network consistency
checks, the verification of the semantics of the network views, is
performed as part of the Design Function stage.

4.4.8 Conclusion

In this section we have presented the Network Whiteboard abstrac-
tion for the High-Level Network Configuration Policy, and the Net-
work Views abstraction as the intermediate network-wide abstraction.
We will now demonstrate their use in a more complete example.
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4.5 simplified small internet example
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Figure 4.31: Netkit Lab Small Internet Topology from Di Battista et al. [25]

We now present a more encompassing example of multiple Net-
work Views that are derived from a Network Whiteboard. The pro-
cess of generating these Network Views will be described in Sec-
tion 5.6. This example is a simplified version of the “BGP Lab: Small
Internet” network topology described in Di Battista et al. [25]. This
topology contains fourteen routers which are are grouped into seven
autonomous systems. This lab is provided as part of the Netkit [84]
simulation platform, and is described as:

An example of complex customer-provider hierarchy re-
sembling the typical structure of the Internet.

The topology diagram for this lab is shown in Figure 4.31, and is re-
produced at full size in Figure B.2. This shows the seven autonomous
systems and the connections between them. These autonomous sys-
tems are designated with roles reflecting the business relationships
common in an Internet scenario. AS1 acts as the “backbone”, AS20,
AS30 and AS40 act as “providers” and AS100, AS200 and AS300 acts
as “customers”. The interface names and IP addresses are shown on
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the interfaces. In addition to the physical topology, there are routing
policies configured to implement the backbone/provider/customer
business relationships. We use this topology to demonstrate how
the approach of Network Views can capture a more realistic network
design than the simplified House example we showed previously. To
better explain our methodology and toolchain, we first make some
simplifying assumptions to the topology which allows us to focus
on the key details of our approach. We remove these simplifications
in Section 8.4.2 to demonstrate how our approach and toolchain can
be used to automate the configuration of this topology. In the case
studies in Chapter 8 we provide a number of other topologies which
demonstrate the flexibility of our approach, including an enterprise
network using VLANs, and a large-scale example. We now explain
the simplifications made for the Simplified Small Internet example.

4.5.1 Simplifying Assumptions

This example is an important mechanism used to communicate the
content of this research. It is introduced here and continued in Chap-
ter 5 and Chapter 6. The implementation and case studies of Chap-
ter 7 and Chapter 8 also use this example. We refer to this example
topology as the Simplified Small Internet Example. This is example
is based on Netkit BGP lab Small Internet of Di Battista et al. [25]. We
make a number of simplifications in order to better introduce and
communicate the concepts at this stage of the thesis. The simplifica-
tions are not due to limitations of our approach, and has no material
impact of the intent of the example cited. We remove these simplifi-
cations in Section 8.4, where we revisit the Netkit Small Internet Lab.
In Section 8.4.2 we discuss how each of these simplifications can be
removed, allowing us to accurately reproduce the “BGP Lab: Small
Internet” network topology described in Di Battista et al. [25].

The example policy and topology without simplifications, taken
from Di Battista et al. [25] is shown in Figure B.2 and Figure B.1. The
simplifications we have made are as follows:

1. There are no end-host subnets. The autonomous systems 20,
30, 40, 100, 200, and 300 each have a /16, /17 or /24 prefix to
represent end-hosts.

2. Autonomous systems are not multi-homed. We remove the
eBGP peering link from as100r1 to as20r1, and from as300r1 to
as20r1. These correspond to 9 to 4, and 11 to 6 in the Network
Whiteboard shown in Figure 4.32.
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4.5 simplified small internet example

3. IP addresses are automatically allocated. This simplifies the
specification of information on the Network Whiteboard. Fig-
ure B.2 specifies each IP address in the network.

4. OSPF is used as the IGP within each autonomous system. Di
Battista et al. [25] uses RIP as the IGP within the autonomous
systems.

5. All iBGP peerings are full-mesh, and routes are not redistributed
into the IGP. This simplifies the routing protocol configuration.
Di Battista et al. [25] uses a variety of methods to announce
eBGP routes to the other routers within an autonomous system.

6. There is no eBGP policy.

7. All links are point-to-point.

We now introduce the Network Whiteboard and Network Views
involved in this complete example.

4.5.2 Network Whiteboard

The Network Whiteboard shown in Figure 4.32 represents a high-
level description of the Network to be configured. This is based
on the overview diagram provided in Di Battista et al. [25]. The
labels specified on the Network Whiteboard are used by the Design
Functions discussed in Chapter 5.

4.5.3 Network Views

We now present each of the Network Views. These are constructed
in the following order as shown in Figure 4.33. We discuss each of
these Network Views in detail. These Network Views capture the key
information about the network design that we can use as an input
to the later stages of our toolchain to generate the low-level device
configurations. We will explain the Design Functions used to create
these Network Views in Section 5.6.
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Figure 4.32: Network Whiteboard description for Simplified Small Internet
Example. Network Elements are labelled with a tuple of
(identifier, asn)
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Figure 4.33: Flowchart of Network View construction using Design Func-
tions for Simplified Small Internet Model
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The Physical Network View, shown in Figure 4.34 represents the
Physical structure of the Network.
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Figure 4.34: Physical Network View, where Network Elements represent
routers, and Network Element Connections show physical con-
nections.

The Physical Network View consists of the following: The set of
Network Elements which are not Pseudo Network Elements. The set
of Network Element Interfaces which have the Physical Role. The set
of Network Element Connections which have the Physical Role.

The Physical View is therefore: all Network Elements which cor-
respond to a physical network device; all Physical Network Element
Interfaces; all Physical Network Element Connections.
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Figure 4.35: Layer 2 Network View. Network Elements show routers and
Pseudo Network Elements show Broadcast Domains. Network
Element Connections show Layer 2 connectivity.

The Layer 2 Network View shown in Figure 4.35 is used to derive
the IP Addressing and Layer 2 Connectivity Network Views. It is
based on the Physical View, and consists of the Network Elements
from the Physical Network View and their Network Element Inter-
faces. Pseudo Network Elements are used to represent the Broad-
cast Domains. Since this example only contains point-to-point links
between routers, the Broadcast Domain Pseudo Network Elements
are created by splitting the Network Element Connections from the
Physical View. The Network Element Connections in this Network
View represent membership of the Broadcast Domain to which they
are connected. For simplicity Broadcast Domain Network Element
Interfaces are not shown in this example.
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The IP Address Network View shown in Figure 4.36, represents the
IP Addressing allocated to the network. Labels are allocated to the IP
Address View to represent IP addresses.
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Figure 4.36: IP Address Network View, with Network Elements represent-
ing routers, and Pseudo Network Elements representing Broad-
cast Domains. Broadcast Domains are shown with their Subnet
Label. Network Element Interfaces are labelled with their IP
address, allocated from the Subnet to which they are connected.

These IP address label allocations are as follows. All routers are
allocated a loopback address, from a subnet that has been allocated
to each Autonomous System. All broadcast domain Pseudo Network
Elements are allocated a subnet, from which individual addresses
are allocated to each Network Element Interface of non-Broadcast
Domain elements. All routers devices are allocated an individual IP
address from the subnet to which they are connected. An example

88



4.5 simplified small internet example

of the IP allocation process to Network Element Interfaces is shown
in Figure 4.37. The IP Address blocks allocated in each autonomous
system are summarised in Figure 4.38.

1 2AA.1 A.2

Figure 4.37: IP Allocation Example, showing Broadcast Domain Pseudo
Network Element, and Network Element Interfaces

Loopback
1: A
20: B
30: D
40: E
100: F
200: C
300: G

Infrastructure
1: 
20: I, J, K
30:
40:
100: R, S, T
200:
300: U, V, W

Figure 4.38: IP Address Blocks for each ASN for Loopback and Infrastruc-
ture Blocks.

The IP Address Network View is therefore:

• All Network Elements from the Layer 2 Network View.

– Network Elements which have the Role of Router have a
label used to represent their loopback IP address.

– Network Elements which are Pseudo Network Elements
with the Role of Broadcast Domain have a label used to
represent the Subnet for which their neighboring Network
Element Interface IPs belong.

• All Network Element Interfaces from the Layer 2 Network View,
with a label to represent the IP address allocated.

• All Network Element Connections from the Layer 2 Network
View. The Network Element Connections are used in the map-
ping of IP addresses to Network Element Interfaces, but do not
hold any specific meaning for the compilation process.
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Figure 4.39: Layer 2 Connectivity Network View, where Network Elements
represent routers, and Network Element Connections show
layer 2 connections.

The Layer 2 Connectivity Network View, shown in Figure 4.39,
shows the connectivity at Layer 2. It is formed by expanding the
Layer 2 Pseudo Network Elements which represent Broadcast Do-
mains. Since these Broadcast Domain Pseudo Network Elements
were created from point-to-point Network Element Connections, this
Network View will look the same as the Physical Network View. For
more complicated topologies, such as with hubs or switches, the
Layer 2 Connectivity Network View will not have a 1:1 relationship
to the Physical Network View. We discuss such topologies in Sec-
tion 5.7.1.
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The OSPF Network View shown in Figure 4.40 represents OSPF
adjacency relationships between routers in the network. The OSPF
Network View contains the Network Elements which have the role
of router. Informally, links are added in the OSPF Network View
where there is a link in the Layer 2 Connectivity Network View which
connects two routers that belong to the same ASs. More formally, Net-
work Element Connections in the OSPF Network View exist where
Network Element Connection in the Layer 2 Connectivity Network
View and the Network Element Connection connects two Network
Elements which have the same value for the ASN label.
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Figure 4.40: OSPF Network View. Network Elements represent routers, and
Network Element Connections represent OSPF adjacencies.
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iBGP Network View
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The iBGP Network View shown in Figure 4.41 represents iBGP
peering relationships between routers in the network. Informally,
links are added in the iBGP Network View between two routers if
they belong to the same AS. The iBGP Network View consists of
the set of Network Elements which have the role of router, a set of
Network Element Interfaces for these Network Elements, which iBGP
session termination points. The set of Network Element Connections
which represent iBGP peering sessions, bound to the iBGP session
termination point Network Element Interfaces.
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Figure 4.41: iBGP Network View. Network Elements represent routers,
and Network Element Connections represent iBGP peerings.
Each Logical Network Element Interface is associated to the
Loopback Zero Network Element Interface of that Network
Element (not shown).
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eBGP Network View
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The eBGP Network View shown in Figure 4.42 represents eBGP
peering relationships between routers in the network. The eBGP
Network View consists of Network Elements which have the role of
router and their Network Element Interfaces. The Network Element
Connections represent eBGP peerings. The Network Element Con-
nections in the eBGP Network View exist where there is a Network
Element Connection in the Layer 2 Connectivity Network View and
the Network Element Connection connects two router Network Ele-
ments which have different values for their ASN label. This is the
inverse of the links from the OSPF Network View.
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Figure 4.42: eBGP Network View. Network Elements represent routers
and Network Element Connections represent eBGP peerings.
Network Element Interfaces represent eBGP session endpoints,
dashed lines show associations to physical Network Element
Interfaces
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4.5.4 Abstract Network Model
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In Figure 4.43 we show how these Network Views in the Abstract
Network Model are related conceptually.

4.5.5 Summary

This example has demonstrated how the approach of Network White-
board and Network Views can be used to capture the information
required in network design. We have shown how a network topology
consisting of multiple autonomous systems can be represented at a
high-level using the Network Whiteboard. We then derived the Physi-
cal Network View, and the resulting Layer 2 and Layer 2 Connectivity
Network Views. The Layer 2 Network View demonstrated the use of
Pseudo Network Elements. It was used to derive the IP Address-
ing Network View, which showed labels on Network Elements and
Network Element Interfaces to represent loopback and infrastructure
IP Addresses. We also showed labels on the Network View itself to
store the IP address blocks allocated to each autonomous system. The
Layer 2 Connectivity Network View was used to derive the OSPF and
eBGP Network Views. The eBGP Network View demonstrated how
Logical Network Element Interfaces can be used to represent protocol
endpoints. These were then bound to the Physical Network Element
Interface that the BGP session was to be established on. Finally, the
iBGP Network View was built from the autonomous system label
on the Network Elements, and showed an algorithmic approach to
establishing Network Element Connections. The iBGP Network View
also used the Logical Network Element Interfaces. These were bound
to the Loopback Logical Network Element Interface for the device.
These Network Views show how Network Element Connections can
be used to represent connectivity relationships between Network Ele-
ments depending on the context of the Network View.

This has shown how Network Views and their constituent elements
can be used to formally capture key aspects of the network design
process. We have shown a number of methods in which the Network
Views can be derived, which we formalise in Chapter 5 using Design
Functions.
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Figure 4.43: Cross-section illustration of the set of Network Views in the
Abstract Network Model for the Simplified Small Internet
Example. Vertical lines represent the association of Network
Elements across Network Views. Each horizontal plane corre-
sponds to a Network View. The Layer 2 Network Views have
been omitted for visual simplicity.
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4.6 design details

In this section we provide a brief overview of the design details
describing how the approach of network views can be implemented
using a graph theory based approach. For brevity we provide a
general overview here, with are much more detailed discussion of
the notation used, and the various functions defined, provided in
Section D.1.

The core abstraction of our approach is the Network View. These
can be represented using graphs, which are a set of nodes and edges,
and can be denoted as G = (N,E). We represent Network Views
as such a graph, where the nodes correspond to Network Elements,
and the edges correspond to Network Element Connections. We rep-
resent Network Element Interfaces by storing them on the Network
Element, and using a pointer reference from the edge to the Network
Element Interface on the node. This simplifies the task of accessing
and manipulating network element interfaces across network views
and simplifies the use of Network Element Connections to being used
to represent the connectivity between Network Elements.

We therefore define a Network View θ to be θ = (Π,E, T ,B,L),
where the symbols are defined in Table 4.1.

Table 4.1: Table of element notation symbols

Element Type Set Symbol Element Symbol

Network Whiteboard – ωi

Network View Θ θi

Network Element Π πi

Network Element Connection E εi

Network Element Interface T τi

Network Element Interface Binding B b

Network Element Connection
Distinguisher

δ -

The Network Whiteboard, Network View, Network Element, Net-
work Element Connection, and Network Element Interface are as
previously defined in Section 4.4. The Network Element Interface
Binding B has the form (εi, {(πj, τj), (πk, τk)}) where εi is the Net-
work Element Connection, τj is a binding of this Network Element
Connection to Network Element Interface τj on Network Element πj,
and τk is a binding of this Network Element Connection to Network
Element Interface τk for Network Element πk. This is shown in Fig-
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ure 4.44. The Network Element Connection Distinguisher is used to
distinguish between multiple parallel Network Element Connections
between the same pair of Network Elements. The set of labels, L
is defined as L = (LΘ,LΠ,LE,LT ), and consists of the labels for the
Network View itself, the Network Elements, the Network Element
Connections, and the Network Element Interfaces. Some Network
Element labels have scope across multiple Network Views, such as the
role of the Network Element (such as router or switch), or the ASN
to which it belongs. These could be stored on the Abstract Network
Model itself. We define role access functions ρΠ(Θ,πi), ρE(Θ, εi), and
ρT (Θ, τi) to access the role of a given Network Element, Network
Element Connection, or Network Element Interface. We also define
λASN(Θ,πi) to access the ASN of a given Network Element.

!j !k"k"j
εi

Figure 4.44: Symbols for the components of Network Views

The Abstract Network Model is the set of all Network Views. We
can denote a generalised Network View as θi = (Πi,Ei, Ti,Bi,Li), and
the Abstract Network Model is then denoted as Θ = θ1, θ2, θ3, . . .. A
Network View can be named using subscript notation, such as θphy,
θospf, etc. An example of the use of this notation is provided in
Appendix C for the Simplified Small Internet example topology.

Using this notation and structure, we can define Low-Level Prim-
itives which access properties and modify these structures. These
Low-Level Primitives can be composed with graph theory algorithms
to form High-Level Primitives. We can then use these Low-Level
Primitives and High-Level Primitives to form Design Functions, which
provide a systematic approach to transforming the Network White-
board into the Network Views. We will discuss Low-Level Primitives,
High-Level Primitives, and Design Functions in Chapter 5.
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4.7 discussion

We now discuss some alternative ways of implementing the design
choices made in the previous sections. We also acknowledge where
design choices presented in this chapter have been influenced by
previous work.

4.7.1 Labels

A role-based approach has been advocated by Buchmann et al. [13].
Our label use achieves many of the benefits advocated in this paper.

In using a graph-based representation, there are alternative choices
as to what the nodes and edges represent. Tozal et al. [100] list
some of these choices in their presentation on Network Layer Internet
Topology Construction:

Nodes: Autonomous Systems (ASes), Routers, Router Tri-
angles, Interfaces, Subnetworks (Subnets)

Edges: Policy-based connections, Subnets, Routers

In our approach, we have decided to make nodes represent network
devices, referred to as Network Elements. The edges represent the
connectivity between these devices. The role of the edge depends on
the context of the Network View. We believe the choices made in this
research are justified based on simplicity of conception and ease of
implementation, as we will demonstrate in the following chapters.

4.7.2 Interface Representation

Interfaces are an important network construct, however they do not fit
directly into graph theory. A model in which nodes represent devices
presents a challenge for capturing interface configuration attributes.

One approach is to represent interfaces as nodes in the graph,
where a device consists of a device node, and multiple interface nodes.
The problem with this approach is the size of the graph grows dra-
matically as new devices are added, and limits the ability to express
design policy as sets of nodes and edges: policy will need to distin-
guish the node type.

Another approach is storing the interface information on the edges,
such as IP addresses or interface speed. This presents a problem
with non-symmetric attributes such as individual IP addresses. A
solution could be to use directed edges, but this also complicates
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expression: the protocol relationships may not be naturally expressed
as a directed graph, and require an extra mapping step.

The approach we adopt is inspired by the suggestion made by [99]
and has two components. The interfaces are stored inside the nodes,
as a set. Similarly to nodes in the graph, we required a unique
labelling for each interface within a node. The edges then contain set
of pairs, which relate to the interface mapped. This approach offers
a number of advantages. The information is stored on the node itself,
signifying the transformation from the network model to the device
level state. The task of mapping interfaces across layers in is greatly
simplified. This approach allows for node level properties such as
degree or neighbours, to also apply to interfaces, by filtering based
on the (node, interface) pair present on edges. This simplifies the
design and verification steps which discuss in later chapters.

4.7.3 Multiple Network Views

Finally, we need to represent multiple topologies, such as physical,
layer 2, OSPF, and BGP. While there may be a relationship between
the topologies, their configuration is often independent.

Our approach represents each topology on a separate graph, with
functions to work across multiple layers. This simplifies design pol-
icy: the presence of an edge in a graph can indicate adjacency, and
also analysis, in that shortest paths and clustering algorithms can be
applied directly, rather than needing to filter nodes and edges based
on their layer.

These layers can be bound through uniqueness requirements. We
require each node, representing a device, to have a globally unique
label. This allows the node to be identified across layers, much like a
primary and foreign key in a database. We also require interfaces to
have a unique identifier within a node. This addresses the following
point from Hares et al.:

VT-TDM-REQ6: The topology model should allow association
between components of different layers. For example, Layer
2 port may have several IPv4/IPv6 interfaces. The Layer-2 port
and the IPv4/ IPv6 interfaces would have an association. (Hares
et al. [44])

We place no such restriction on edges: their relationship across
topologies can be found through the use of the nodes and interfaces
they connect. This simplifies design policy which can form new
relationships, such as a clique at layer 3, based on layer 2 properties,
such as a switch. The relationship between these adjacencies can be
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found from the interface, which at layer 2 would be connected to the
switch, but at layer 3 having an edge to each layer 3 host connected
to that switch.

Other approaches such Neo4j [75], which has been used in network
management represent the network with a single graph, in which
edges are labelled to mark the role in which they play, such as a
physical link or a BGP session. This can add overhead to each al-
gorithm. We believe representing each topology independently pro-
vides greater clarity, and simplifies policy expression.

4.8 conclusion

In this chapter we have presented an overview of our approach to
automated network configuration generation from a high-level policy
abstraction.

We introduced two key concepts of our approach, the Network
Whiteboard, and Network Views. Both of these concepts build on
the idea of a graph of Network Elements and Network Element Con-
nections. Network Elements correspond to the individual devices
which are to be configured. Network Element Connections corre-
spond to the links between these devices. The meaning of the Net-
work Element Connection depends on the topology view that we are
looking at. Network Element Connections terminate at a Network
Element Interface, which is an interface on a Network Element. Each
of Network Elements, Network Element Connections, and Network
Element Interfaces can be annotated through the use of labels. Our
approach is based on using Network Element Connections and labels
to represent configuration information on Network Elements and Net-
work Element Interfaces. A network design can be expressed through
use of a Network Whiteboard. This Network Whiteboard consists
of Network Elements, Network Element Connections, and Network
Element Interfaces, and labels, to capture a high-level network design
policy.

This chapter also introduced the Simplified Small Internet Example,
and gave examples of a number of Network Views, for the physical,
layer 2, IP addressing, and for the routing protocols.

In this chapter we have shown how the Network Whiteboard ab-
straction addresses Research Question 1: Is there a declarative represen-
tation of High-Level Network Policy that is also likely to be widely adoptable
by current network practitioners?, and the Network Views abstraction
addresses Research Question 2: What is a better intermediate representa-
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tion of network configuration that is based on graph theory, supports a well
structured compilation process and provides clear separation of concerns?

In the next chapter we will explain how the Network Whiteboard
is transformed into Network Views using Design Functions.
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N E T W O R K V I E W T R A N S F O R M AT I O N

5.1 introduction

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Template
Assembler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

Figure 5.1: Toolchain highlighting Design Functions

In the previous chapter we introduced our toolchain and approach,
and presented the details of our Network Whiteboard and Network
Views abstractions. In this chapter we present the Design Functions
which are used to derive the Network Views intermediate represen-
tations from the high-level Network Whiteboard input description.
This aims to address Research Question 3: How can declarative High-
Level Network Policy descriptions be transformed into a graph-based inter-
mediate format using a compiler that is extensible in terms of new types of
policies and new protocols?

Design Functions are used to transform the Network Whiteboard
description into Network Views. These Network Views capture net-
work designs at the network level of abstraction. This is shown in the
toolchain in Figure 5.1. The flowchart in Figure 5.2 illustrates the re-
lationship between Design Functions, the Network Whiteboard, and
Network Views. This chapter describes the development of Design
Functions, through Low-Level Primitives and High-Level Primitives,
and provides a number of examples of the use of Design Functions.

This chapter is organised as follows. We first outline the key con-
cepts involved in the construction of Network Views, including De-
sign Functions, and the Primitives from which the Design Functions
are composed. We then provide an overview of the Low-Level Primi-
tives, and how they can be composed to form High-Level Primitives.
Additional detail on these Low-Level and High-Level primitives is
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Figure 5.2: Overview Flowchart of Network View construction from Net-
work Whiteboard using Design Functions.

provided in the appendices. From there, we provide a definition of
the Design Function abstraction, and present common Design Func-
tion patterns, using the Low-Level and High-Level Primitives.

We then revisit the Small Internet example from Chapter 4, and
provide a worked example of how the Network Views presented in
Chapter 4 can be constructed through the use of Design Functions.
We next examine a series of expanded Design Functions, demon-
strating how they can be used to capture more complicated network
design tasks.

Finally we discuss how each of these key components can be com-
posed to provide an end-to-end solution that transforms the Network
Whiteboard specification into the Network Views of the Abstract Net-
work Model, suitable for compilation into Device Models. This com-
pilation step is presented in Chapter 6.

5.2 key concepts

We first outline the key concepts used in the Network View Trans-
formation process. Figure 5.3 presents a high-level overview of these
concepts.

5.2.1 Network View Construction

In Chapter 4 we defined and showed examples of Network Views.
This section will explain how these Network Views can be derived
from the Network Whiteboard, using Design Functions.
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Figure 5.3: Flowchart showing Design Functions composed of High-Level
Primitives and Low-Level Primitives

An important task in the Network Design stage is the construc-
tion of Network Views, which represent the topologies used in the
configuration process. These Network Views are constructed using
Design Functions, which apply Low-Level and High-Level Primitives.
Design Functions describe how a Network View can be created by the
transformation of either the Network Whiteboard or other Network
Views.

5.2.2 Primitives

Primitives are a set of low-level operations on the Network Views.
Low-Level Primitives describe the most basic operations that can

be performed on the elements (Network Elements, Network Element
Connections, and Network Element Interfaces). These operations
include addition and deletion, and the setting of labels.

For commonly repeated tasks, the Low-Level Primitives can be
grouped into High-Level Primitives. High-Level Primitives also al-
low network configuration domain-specific concepts to be realised
through the use of graph theory. This can simplify the application
of graph theory fundamental concepts by network designers. These
Low-Level and High-Level Primitives are then composed to build the
Design Functions. These Design Functions are used to implement
network design goals.

5.2.3 Design Functions

The Design Functions specify the rules to transform the Network
Whiteboard into the Network Views, or to successively build Network
Views from other Network Views. They decouple the Whiteboard
specification of an individual network from the design patterns used
to construct a network. Design Functions can be used to configure
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routing protocols topologies, generate IP addresses, or to run verifica-
tion checks. Once the Design Functions have been run, the Network
Views represent the desired network-wide state for the specific net-
work to be configured. This state specification is independent of the
syntax and semantics of the specific target device.

Together, the Design Functions and Network Views form the high-
level network design component of our approach. Design Functions
operate on the Network Whiteboard, and Network Views to create
or modify Network Views. Design Functions can take four general
forms: a Consistency Check, Construction Design, Verification, or Op-
timisation. In this chapter we discuss Construction Design Functions,
which we will refer to as Design Functions for brevity. We discuss
optimisation and verification in Chapter 9.

Consistency Check Functions operate on a Network View and are
run before the Design Function, to check feasibility. They can also
be incorporated as part of a Design Function, to apply a consistency
check during the design process, such as after a transformation has
been applied.

Construction Design Functions are the most common form of
Design Function. Design Functions in this category are responsible
for creating and modifying Network Views. These implement high-
level designs to realise design policy, and their output is used in the
device configuration generation process described in Chapter 6.

Optimisation Functions are a special case of Construction Design
function, that are used to optimise the functionality of a single Net-
work View, rather than constructing a new Network View. This opti-
misation could involve setting labels, or simplifying the connectivity
that is described using the Network Element Connections.

Verification Functions operate on a Network View, and are used
to verify the Network View is consistent, according to a set of consis-
tency rules defined in the Verification Function. They do not create
or modify Network Views. Their output can be a boolean to indicate
an invalid Network View, with optional logging messages.

5.2.4 Intermediate Network Views

The purpose of Network Views is to provide a way to capture configu-
ration topologies, which are then used in the configuration generation
step. Most Network Views are directly used to capture configura-
tion information. These Network Views are used to generate the
Intermediate Device Models discussed in Chapter 6. However not
all Network Views need to be used in the configuration generation
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step. Intermediate Network Views are constructed to assist in the
formation of the final Network Views.

Intermediate Network Views are useful to capture network design
goals or concepts, and to avoid repeated logic in the Design Functions.
For example multiple IGP routing protocols may form adjacencies
from element labels in the Layer 2 connectivity Network View. In
this case, capturing the Layer 2 connectivity as an Intermediate Net-
work View avoids repeated the same logic in each of the IGP Design
Functions: each of the IGPs can build from the same common Layer
2 view.

This also allows a separation of concerns. By avoiding logic repe-
tition, the Design Functions used to form the Intermediate Network
View can be modified without needing to modify the Design Function
of the subsequent Network Views. For instance, the Design Functions
used to create the Layer 2 Network View could be expanded to handle
VLANs and managed switches. If the Design Function produces a
valid Layer 2 Network View, the IGP routing protocol Design Func-
tions do not need to be altered. This allows expansion of the Layer
2 network functionality without requiring other Design Functions to
be modified. Finally, this presents a clearer conceptual model to the
network designer. As it is not used for the Device Compilation step,
the Layer 2 Network View could be considered an Intermediate View.

5.2.5 Conclusion

This section has presented the key concepts in the Network View
Transformation process, which is used to transform the Network White-
board specification into the Network Views in the Abstract Network
Model. The Network Views are produced using Design Functions,
which are composed of Low-Level Primitives and High-Level Primi-
tives. We next examine the Low-Level Primitives in detail.
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In this section we provide an overview of the Low-Level Primi-
tives. These are the most fundamental functions in our approach,
and directly manipulate the set of elements described previously in
Section 4.6. A more detailed discussion of the Low-Level Primitives
is presented in Section D.2. The create and remove Low-Level Primi-
tives are responsible for adding or removing the elements from the
appropriate set. These are shown in Table 5.1. The label Low-Level
Primitives are summarised in in Table 5.2, which can be set on the
various elements of the Network Whiteboard and Network Views.
The associative array Low-Level Primitives, shown in Table 5.3, are
used to store key-value pairs in associative arrays, such as for IP
Address allocations in an autonomous system. Finally, the properties
Low-Level Primitives are used to access the elements, such as all
Network Elements in a given Network View, and their properties,
such as the degree or testing if a Network Element Connection is
parallel. These are shown in Table 5.4.
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Table 5.1: Summary of create and remove Low-Level Primitives

Creation

create_θ(Θ) Creates a Network View θi within set Abstract
Network Model Θ

create_π(Π) Creates a Network Element πi within set of Network
Elements Π

create_ε(E) Creates a Network Element Connection εi within set
of Network Element Connections E

create_τ_π(T) Creates a Network Element Interface within set of
Network Element Interfaces T

Addition

add_ne(θi,πj) Adds Network Element πj to Network View θi

add_nec(θi, εj) Adds Network Element Connection εj to Network
View θi

add_lnei(θi,πj) Adds Network Element Connection εj to Network
View θi

Removal

remove_ne(θi,πj) Removes Network Element πj from Network View θi

remove_nec(θi, εj) Removes Network Element Connection εj from
Network View θi
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Table 5.2: Summary of labels Low-Level Primitives

Get Label

λΘ(θi, label) Returns value of label label for Network View
θi

λΠ(θi,πj, label) Returns value of label label for Network
Element πj in Network View θi

λT (θi,πj, τk, label) Returns value of label label for Network
Element Interface τk on Network Element πj
in Network View θi

λASN(Θ,πi) Returns ASN label for Network Element Pii in
Abstract Network Model Θ

ρΠ(Θ,πi) Returns role label for Network Element πi in
Abstract Network Model Θ

ρE(Θ, εi) Returns role label for Network Element
Connection εi in Abstract Network Model Θ.

ρT (Θ, τi) Returns role label for Network Element
Interface τi in Abstract Network Model Θ.

λM(M,πi, τj, id) Returns label label for Network Element
Interface τj on Network Element pii in
Intermediate Hardware Model M.

Set Label

set_label_θ(θi,k, v) Sets label k on Network View θi to value v

set_label_Π(θi,πj,k, v) Sets label k on Network Element πj in
Network View θi to value v

set_label_t(θi,πj, τk, k, v) Sets label k on Network Element Interface τk
of Network Element πj in Network View θi to
value v

Table 5.3: Summary of associative array Low-Level Primitives

get_key_val(array,key) Returns the value stored by key key in
associative array array.

set_key(array, label, value) Sets the value value for key key in associative
array array.
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Table 5.4: Summary of properties Low-Level Primitives

Network View

NV(Θ, name) Returns Network View θname in Abstract
Network Model Θ

Network Element

Π(θi) Network Elements for Network View θi

Πu(θi, εj) First (by sorting) Network Element connected
by Network Element Connection εj in
Network View θi

Πv(θi, εj) Second (by sorting) Network Element
connected by Network Element Connection εj
in Network View θi

Πrouters(θi) Network Elements with role of router for
Network View θi

neigh_ne(θi,πj, τk) Returns neighbor Network Element for
Network Interface τk on Network Element πj
in Network View θi

Network Element Interface

DegreeT (θi,πj, τk) Returns degree of Network Element Interface
τk on Network Element πj in Network View θi

get_lo_zero(θi,πj) Returns loopback0 Network Element Interface
for Network Element πj in Network View θi

nec_nei(θi, εj,πk Network Element Interface bound to Network
Element Connection εj for Network Element
πk in Network View θi

T(θi, εj,πk) Alias for nec_nei function

Tu(θi, εj) First (by sorting) Network Element Interface
bound to Network Element Connection εj in
Network View θi

Tv(θi, εj) Second (by sorting) Network Element Interface
bound to Network Element Connection εj in
Network View θi

Network Element Connection

NEC(θi,πj) Network Element Connections connected to
Network Element πj in Network View θi

E(θi,πj) Alias for nec function

nec_other_ne(θi, εj,πk) Network Element Interface bound to Network
Element Connection εj for remote connection
Network Element πk in Network View θi

parallel(θi, εj) Boolean result for whether Network Element
Connection εj has parallel Network Element
Connections (connects same Network Element
pairs) in Network View θi
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High-Level Primitives combine the Low-Level Primitives and graph
theory algorithms to provide higher-level functions, which can be
used for common steps of network design tasks. These can be used
together with the Low-Level Primitives to form the Design Functions
which create Network Views.

5.4.1 Summary

We now present a brief summary of the High-Level Primitives used
in the Design Functions of this chapter. These are shown in Table 5.5.
They include creation High-Level Primitives, used to create Network
Views, Pseudo Network Elements, or Logical Network Element In-
terfaces. They can also be used for associating Network Element
Interfaces to Logical Network Element Interfaces, such as for iBGP
and eBGP sessions. We also summarise the advanced modification
and graph-theory based High-Level Primitives which we will present
in this section. We present a more detailed discussion of High-Level
Primitives in Section D.3.
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Table 5.5: Summary of High-Level Primitives

Primitive Description

Creation and Modification

createθ(Θ,phy) Creates Network View phy in ANM Θ

create_pne(θi) Creates a Pseudo Network Element in
Network View θi

create_return_lnei(θi,πj) Creates a Logical Network Element Interface
on Network Element πj in Network View θi

associate_nei(θi,πj, τk, τl) Associates a Network Element Interface τl to
Logical Network Element Interface τk for
Network Element πj on Network View θi.

Advanced Modification

group Groups Network Elements

split Splits Network Element Connection

merge Merges Network Elements

explode Explodes Network Elements

Graph-Theory Based

connected_components(G) Returns a set of subgraphs of each connected
component of the graph or subgraph G

subgraph(θi,X) Subgraph of Network View θi contains
Network Elements X, their Network Element
Interfaces, and the Network Element
Connections contained within X
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5.4.2 Graph-Theory Based High-Level Primitives

As part of the Network View construction process, it is often nec-
essary to establish certain properties between Network Views. An
example is testing if two Network Elements in different Network
Views, are equivalent. This test is used in both the Design Function
and Compilation steps. We can also define High-Level Primitives to
test if a label is the same for both Network Elements, or Network
Element Interfaces, for a given Network Element Connection. These
tests are defined in Algorithm E.59 and Algorithm E.60. Another
class of High-Level Primitive queries properties of the network, such
as Πrouters(θi) which returns the elements Π, the set of Network
Elements which have the role of router, for a given Network View θi.
This is defined as Algorithm E.62.

Grouping

An important type of query used to construct Network Views is to
establish the Network Elements fulfil a particular set of criteria. We
refer to the output of such a query as a grouping. The Group High-
Level Primitive returns a set Network Element sets which meet a
set of grouping criteria. An example definition is shown in Algo-
rithm E.57. The function signature is grouping(θi,X, label) where
θi is the Network View, X is the set of Network Elements to group,
and label is the label to group by, such as asn. An example of
the grouping output for the ASN value in the Small Internet Model
discussed in Chapter 4 is shown in Figure 5.4.
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Figure 5.4: Example output for Group of Network Elements in Small Inter-
net example by asn attribute

Boundary Network Elements

The Boundary Network Elements High-level Primitive is based off
the node_boundary function from NetworkX [93]. For a given set of
Network Elements, the Boundary Network Elements are those that

113



5.4 high-level primitives

have a Network Element Connection to a Network Element outside
of the set. An example pseudo-code definition is shown in Algo-
rithm E.58. The function signature is boundary_nodes(θi,X) where
θi is the Network View, and X is the set of Network Elements to find
the boundary Network Elements of.

For the topology shown in Figure 5.5, consider the set of Network
Elements shown in the dashed box, (r3, r4, r5, r6). The Boundary
Network Elements for these Network Elements would be r3 and r6,
as they have a Network Element Connection to a Network Element
outside of the set (r3 connects to r1 and r2, and r6 connects to r7).

r2

r3

r4

r6

r5

r7

r8 r9

r1

Figure 5.5: Example topology for Boundary Network Elements High-
level Primitive. For clarity the Network Element Interfaces are
not shown.

Connected Components

The Connected Components High-Level Primitive is useful in both
Design Functions and Verification Functions. For Design Functions
it can be used to break a Network View up into domains based on
connectivity, such as determining switching domains when building
the connection domains of managed switches for VLANs. This is
discussed further in Section 5.7.2. It can also be used in Verification
Functions, which we discuss in Section 9.3.3, to confirm full connec-
tivity within a set of Network Elements. For instance in the OSPF
Network View, we can verify that there is full connectivity between
the nodes in each autonomous system.

This High-Level Primitive can be implemented using a Depth-First
Search (DFS) or Breadth-First Search (BFS) algorithm. A node in a
graph (Network Element in a Network View) is first selected, and a
DFS/BFS performed from the node. This then gives the set of nodes
that form the first connected component. We then consider the set of
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nodes which have not been visited, and select a node from this set,
and then perform the DFS/BFS algorithm, giving the set of nodes
forming the second connected component. This process is repeated
until all nodes have been visited. A pseudo-code definition is shown
in Algorithm E.64.

For the example topology shown in Figure 5.6, there would be two
sets of connected Network Elements. The first set would contain (r1,
r2, r3, r4, r5, r6), and the second set would contain (r7, r8, r9).

r2

r3

r4

r6

r5

r7

r8 r9

r1

Figure 5.6: Example topology for Connected Components High-level
Primitive. This topology has two connected components. For
clarity the Network Element Interfaces are not shown.

Subgraphs

In graph theory, a subgraph can be defined as follows. Let H be a
subgraph of a graph G. Then the set of nodes in H is a subset of
the nodes in G, and the set of edges in H is a subset of the edges in
G. The subgraph concept can be used in Design Functions to break
a Network View into a smaller graph whilst retaining connectivity.
They can be used as an extension of the grouping function, where the
subgraph provides both a set of nodes and the connectivity between
these nodes. This is useful to be able to use Low-Level Primitives such
as neighbours or degree on the Network Elements of the subgraph.
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5.4.3 Advanced Topology Modification High-Level Primitives

Introduction

In network design, it is common to want to modify the structure of a
Network View. For example, when creating a Layer 2 Network View,
point-to-point links are split to place a broadcast domain Pseudo
Network Element between them. The merging function is also used
when constructing the Layer 2 Network view. We need to merge
multiple connected switches together forming a single broadcast do-
main. We also need to explode Network Elements when generating a
connectivity view, such as building the Layer 2 connectivity Network
View, from the Layer 2 Network view. In this case, the Layer 2

Broadcast Domain Pseudo Network Elements, are exploded to form
the Layer 2 Connectivity Network View. These functions can be
combined to transform a the Network View shown in Figure 5.7a
to the Network View shown in Figure 5.7b.
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Figure 5.7: Example of combined transformation High-Level Primitives

The High-Level Primitives defined in this section are split, group,
and explode.
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Split

The split High-level Primitive takes a Network Element Connection,
and splits it by placing a new Pseudo Network Element in the middle.
This Pseudo Network Element automatically has new Network Ele-
ment Interfaces created for it. Importantly, the Network Element in-
terface bindings from the two original Network Elements are retained.
An example of the use of this Primitive is in creating the Layer 2 Net-
work View, where point-to-point links are split to place a broadcast
domain Pseudo Network Element between them. We provide further
details of this operation in Section 5.6.2. A pseudo-code definition of
the split High-Level Primitive is provided in Algorithm 5.1, and an
example in Figure 5.8.

1 2a a

(a) split: before

1 2p1 ba a a

(b) split: after

Figure 5.8: Example of split High-Level Primitive

Algorithm 5.1 Definition for split High-Level Primitive
function Split(θi,X)
θ ′i ← θi

for εi ∈ X do
(θ ′i,p)← create_pne(θ ′i) . Create Pseudo NE
(θ ′i, τp1) = create_return_lnei(θ ′i,p) . Add logical NEI

to p
(θ ′i, τp2) = create_return_lnei(θ ′i,p) . Add logical NEI

to p
πu = Πu(θi, εi)
πv = Πv(θi, εi)
τu = T(θi, εi,πu)
τv = T(θi, εi,πv)
θ ′i ← add_nec(πu, τu,p, τp1) . Add NEC from u to p, keep

u NEI binding
θ ′i ← add_nec(πv, τv,p, τp2) . Add NEC from v to p, keep

v NEI binding
θ ′i ← remove_nec(θ ′i, εi) . Remove the original NEC

end for
return θ ′i

end function
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Merge

The merge High-level Primitive takes two Network Elements and
merges them into a single Pseudo Network Element. Importantly, the
bindings of the neighbouring Network Element Interfaces for these
merge Network Elements are retained. This High-Level Primitive
could be applied multiple times to merge multiple Network Elements.
In Figure 5.9, the binding of Network Element Interface a on Network
Element 1, Network Element Interface a on Network Element 3, and
Network Element Interface a on Network Element 5, have been re-
tained, as is shown in Figure 5.9b.
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Figure 5.9: Example of merge High-Level Primitive

This High-Level Primitive is also used when constructing the Layer
2 Network view. It is used to merge multiple connected switches
together forming a single broadcast domain. This operation is de-
scribed in further detail in Section 5.6.2. A pseudo-code definition of
the merge High-Level Primitive is provided in Algorithm 5.2, and is
similar to the graph-theory concept of edge contraction described in
[108, page 23]
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Algorithm 5.2 Definition for merge High-Level Primitive
function Merge(θi,X)
θ ′i ← θi

G← subgraph(θi,X)
C = connected_components(G)

for c ∈ C do . Each set of connected components
(θ ′i,p)← create_pne(θ ′i) . Create Pseudo NE
for x ∈ c do . Each NE in component

for ε ∈ E(x) do . Each NEC for NE x
πremote = nec_other_ne(θi, εj, x) . Far-end NE
if πremote /∈ c then . Far-end NE not in component

(θ ′i, τp) = create_return_lnei(θ ′i,p) . Add
logical NEI to p

θ ′i ← reconnect_nec(ε,πremote,p, τp) .

Reconnect NEC to p
else
θ ′i ← remove_nec(θ ′i, ε) . Internal NEC, remove

end if
end for
θ ′i ← remove_ne(θ ′i, x) . Remove the NE

end for
end for
return θ ′i

end function

Explode

The explode High-level Primitive takes a Network Element, and ex-
plodes this, to form a full mesh of connectivity between all of the
Network Elements connected to this exploded element. Importantly,
the Network Element Interface bindings of the Network Elements
that originally connected to the exploded element, are retained.

If the original exploded Network Element is connected to more
than two Network Elements, then the retained Network Element In-
terface bindings, will result in there being more than one Network
Element Connection for each Network Element Interface. The ex-
ample shown in Figure 5.10 illustrates this, where Network Element
1 is connected to Network Element 3 with the Network Element
Interface binding a. Network elements 2 and 4 also connect with their
Network Element Interface binding a. Network Element 5 connects
with Network Element Interface binding b.

We then apply the explode High-level Primitive to Network Ele-
ment 3. The result is Network Element Connections being established
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Figure 5.10: Example of explode High-Level Primitive. Network Element
Interface bindings have been retained, such as for b from
Network Element 5.

between each of Network Elements 1, 2, 4, and 5. We can see that the
Network Element Interface bindings have been retained. Network
Element 1 connects to2, 4 and 5, all through the Network Element In-
terface binding a, which was the Network Element interface binding
of the original connection between Network Element 1 and Network
Element 3. Similarly, Network Elements 2 and 4 are also connected
through Network Element Interface binding a.

Network element interface 5 was originally connected through Net-
work Element Interface binding b, so the connection from Network
Element 5 to Network Elements 1, 2 and 4 are through Network
Element Interface binding b.

This High-level Primitive is used when generating a connectivity
view, such as building the Layer 2 Connectivity Network View from
the Layer 2 Network View. In this case, the Layer 2 Broadcast Do-
main Pseudo Network Elements are exploded to form the Layer 2

Connectivity Network View. We show this in use in Section 5.6.4.
Some protocol require a special low-level configuration setting, such

as if a session, or adjacency is multipoint. Such a label can be set
on the Network Element Interface bindings created by the explode

function, by applying this label, if the degree Low-Level Primitive
of a Network Element Interface is greater than one. In the example
shown in Figure 5.10, each of the Network Element Interfaces are of
degree one. However, once we have applied the explode function,
the Network Element Interface binding of Network Elements 1, 2
and 4, and the Network Element Interface binding b of Network
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Element 5, are all of degree three. Therefore we could place a label on
these Network Element Interfaces indicating that they are multipoint,
which could then be used in setting the appropriate configuration
parameters in the compilation process discussed in Chapter 6. This
approach allows for the variety of Layer 2 connectivity methods to
be handled in a way that is consistent when constructing the various
routing protocol Network Views. A pseudo-code definition of the
explode High-Level Primitive is provided in Algorithm 5.3.

Algorithm 5.3 Definition for explode High-Level Primitive
function Explode(θi = (Π,E, T ,B,L),X)
θ ′i ← θi

for x ∈ X do
P ← ∅ . Initialise set of pairs
for εj ∈ E(θi, x) do . All NECs for this NE
πremote = nec_other_ne(θi, εj, x) . Far-end NE
τremote = nec_nei(θi, εj,πremote) . Far-end NEC
p← (πremote, τremote) . Store this pair
P ← P ∪ p

end for
while |P| > 1 do . While still at least one pair

(πi, τi)← P.pop() . Choose next pair
for (πj, τj) ∈ P do . For all other remaining pairs

if πi 6= πk then . No self-loops
θ ′i ← add_nec(πi, τi,πj, τj) . Add NEC, retain

NEI bindings
end if

end for
end while

end for
return θ ′i

end function

5.4.4 Conclusion

In this section we have described the High-Level Primitives used to
create, modify, query and remove elements from Network Views. In
the next section we show how these Primitives are assembled into the
Design Functions which are used to create Network Views.
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A Design Function is an assembly of Primitives which are used to
construct a Network View. In this section we describe seven Design
Functions to construct views for common network design problems.
As part of the extensible framework for this tool, users may construct
further Design Functions depending on their design requirements.

We introduce these Design Functions through an example. The
number of Design Functions a user will require is determine by the
capabilities of the network design for which they are constructing
a Network View. For example, to configure the local area network
without IP Addressing or routing, only the Physical Design Function
would be required.

5.5.1 Example of Design Function Composition

An example of a Design Function composed of Low-Level Primitives
and High-Level Primitives is shown in Figure 5.11. This hypothetical
example illustrates how the Primitives can be combined to form a
Design Function. We provide a more realistic example of Design
Functions in the next section, when we explain how the Network
Views for the Simplified Small Internet Example can be derived.

For this example, we create a Network View 2 (θ2) based on the
structure and labels of Network View 1 (θ1). The first step is to create
the new Network View. We then select and filter the Network Ele-
ments from (θ1). For instance this could be only selecting the router
Network Elements from a mixed device Network View. We then add
the filtered Network Elements to (θ2). This also adds the Network
Element Interfaces of these Network Elements. Next we select and
filter the Network Element Connections from (θ1). This could filter
out connections that are labelled with a special designated role such
as a VPN, leaving only the physical connectivity. We then add these
filtered Network Element Connections to (θ2). The next step in this
example is to use the split High-Level Primitive on these Network
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Figure 5.11: Composition of Low-Level and High-Level Primitives to build
a Design Function

Element Connections, to create Pseudo Network Elements. The final
step is to apply a label to a set Network Elements, such as to mark the
Pseudo Network Elements as having a special role, such as being a
broadcast domain. This completes the network design steps to create
the Network View 2 (θ2).

This simplified example shows how the Low-Level and High-Level
Primitives can be composed to form a Design Function, which is used
to transform Network View 1 to create Network View 2 according to
network design rules. We now demonstrate how this approach can be
used in our toolchain to create the Network Views for the Simplified
Small Internet Model.
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5.6 simplified small internet design functions
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This example shows how Design Functions that are required to
create the Network Views discussed in Section 4.5, and reproduced
below in Figure 5.12.

Physical12
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Figure 5.12: Cross-section illustration of the set of Network Views in the
Abstract Network Model for the Simplified Small Internet
Example, as shown in Figure 4.43. Vertical lines represent the
association of Network Elements across Network Views. Each
horizontal plane corresponds to a Network View. The Layer 2

Network Views have been omitted for visual simplicity.
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5.6.1 Physical Design Function
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Figure 5.13: Physical Network View

The Physical Design Function is creates the Physical Network View.
This is performed by looking at the Network Whiteboard and collect-
ing all Network Elements which represent a physical network device.
This is the set of all Network Elements which are not Pseudo Network
Elements.

Here, we provide a discussion of Low-Level and High-Level Prim-
itives can be used to construct the Physical Network View presented
in Figure 5.13. The first step is to create the physical Network View
in the Abstract Network Model. The next step is to add the physical
Network Elements. This can be performed by selecting the physical
Network Elements from the Network Whiteboard, and then adding
them using the adding Network Elements High-Level primitive. This
can also be performed using the Add Specific Network Elements High-
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Level primitive. This constructs a new Network View containing the
Physical Network Elements. The next step is to create the physical
Network Element Connections. For this example we assume that
all Network Element Connections in the Network Whiteboard have
the physical role. An example pseudo-code definition is shown if
Algorithm 5.4. The notation and functions used in the pseudo-code
are shown in the appendices.

Algorithm 5.4 Pseudo-Code for Physical Design Function
function Physical Design Function(Θ,ω)
θphy ← createθ(Θ,phy)
X← (Πrouters(ω)) . NE from Network Whiteboard
θphy ← add_ne(θphy,X)
Y ← (E(ω)) . NEC from NW
Y ′ ← {ε ∈ Y | ρE(Θ, εi) = physical} . Filter physical edges
θphy ← add_nec(θphy, Y ′)

end function

5.6.2 Layer 2 Design Function

Abstract Network Model

Layer 2 Conn. 
Network View

IP Address 
Network View

OSPF
Network View

iBGP
Network View

eBGP
Network View

Layer 2
Network View

Physical 
Network View

IP Address
Design Function

Layer 2 Conn.
Design Function

OSPF
Design Function

iBGP
Design Function

eBGP
Design Function

Layer 2
Design Function

Physical
Design Function

The Layer 2 Design Function captures the broadcast domains within
the network. This example contains only routers with point-to-point
links between them. Therefore the broadcast domains in the network
can be created by simply splitting each point-to-point link between
the routers, with a Pseudo Network Element that represents a broad-
cast domain. The Layer 2 Network View is shown in Figure 5.14.

If switches were present in the network, then an extended approach
would used to create Layer 2 Network View. We discuss this in
Section 5.7.1. The process is then to create the Network View, and
then add the Network Elements. We construct the Layer 2 Network
View from the Network Elements in the physical Network View. This
can be performed using the add specific Network Elements high-level
primitive, similar to how the physical Network View was constructed
from the Network Whiteboard. The next step is to add Network
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Figure 5.14: Layer 2 Network View

Element Connections. These are also formed from the connections
of the physical Network View. We then construct the broadcast do-
mains, by splitting the point-to-point links, using the split high-level
primitive. This produces a Pseudo Network Element between each
pair of Routers that have a Network Element collection in the physical
Network View. These Pseudo Network Elements represent the broad-
cast domains, and can be used for the IP address allocation Design
Function. We mark each of these newly added to the Network Ele-
ment with a broadcast domain label, which simplifies their selection
in Network Element filtering operations. A pseudo-code example of
the Layer 2 Design Function is shown in Algorithm 5.5.

Algorithm 5.5 Pseudo-Code for Layer 2 Design Function
function Layer 2 Design Function(Θ)
θlayer_2 ← createθ(Θ, layer_2)
X← (Πrouters(θphy) . Routers from Physical NV
θlayer_2 ← add_ne(θlayer_2,X)
Y ← (E(θphy))

θlayer_2 ← add_nec(θlayer_2, Y)
θlayer_2 ← split(θlayer_2, Y) . Split all p-to-p connections
P = Π(θlayer_2) −X . Set of newly added Pseudo-NEs
θlayer_2 ← set_label_Π(θlayer_2,P, broadcast_domain, True)

. Mark as Broadcast Domain
end function
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5.6.3 IP Address Design Function
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We now describe the construction of the IP address Network View,
which contains the IP addressing used in the network. The Design
Function used to create this view is an example of resource alloca-
tion, where a sequence is mapped to a set of elements. A sequence
representing loopback addresses is mapped onto the router Network
Elements, and a sequence representing infrastructure addresses is
mapped onto the router Network Element Interfaces. They can be
used to produce the Network View shown in Figure 5.15.
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Figure 5.15: IP Address Network View

To simplify this example we use a place-holder denoted by a letter
to represent specific IPv4 network address . We provide a more
thorough treatment of IP addressing including IPv4 prefixes, in the
case studies in Chapter 7 and Chapter 8. There are two types of IP ad-
dresses that we allocate in this Network View: the loopback address
allocated to each router, and the infrastructure IP address allocated to
the physical Network Element Interfaces. In addition to this, we also
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store the address blocks which have been allocated onto the Network
View itself, for use in routing protocol prefix advertisement.

Base Structure

We first create the IP Address Network View, following the same
pattern as for the Physical and Layer 2 Network Views, and then add
the Network Elements. We use the Layer 2 Network View created
in the previous section, which consists of Router Network Elements,
and a series of Pseudo Network Elements representing broadcast
domains. We copy across the Network Element Connections and
Network Element Interfaces directly from the Layer 2 Network View.
This captures the connectivity of the Routers to the broadcast domain
Pseudo Network Elements, and the interfaces on which the routers
connect to the broadcast domains. A pseudo-code description is
shown in Algorithm 5.6.

Algorithm 5.6 Pseudo-Code for structure of IP Address Design
Function

function IP Base Structure Component(Θ)
θip ← createθ(Θ, ip)
X← (Π(θlayer_2) . NEs and PNEs from Layer 2 NV
θip ← add_ne(θip,X)
Y ← (E(θlayer_2))

θlayer2 ← add_nec(θlayer2 , Y)
end function

Loopback Address Allocation

We now look at loopback address allocation. We allocate a prefix
block to each autonomous system in the networ, which we denote by
the letters A, B, C, D, E, F, and G. We allocate loopback addresses to
the router Network Elements, but do not allocate loopback addresses
to the broadcast domain Pseudo Network Elements. Within each
autonomous system, we allocate the individual IP addresses from this
block. For instance AS1 has a single router, which is allocated the pre-
fix A.1. AS20, contains three devices, which are allocated IP addresses
from the prefix range B: B.1 B.2 and B.3. In a real-world example these
prefixes would correspond to actual IPv4 addresses. For instance the
prefix A may represent 192.168.0.x with router 1 allocated 192.168.0.1.
B may be 192.168.1.x with router 2 allocated 192.168.1.1, router 3 allo-
cated 192.168.1.2 and router 4 allocated 192.168.1.3. The requirement
for the loopback addresses is that they are globally unique within the
network. A pseudo-code example is shown in Algorithm 5.7.
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Algorithm 5.7 Pseudo-Code for IP Address Loopback Allocation
component of IP Address Design Function

function IP Loopback Component(Θ)
θip = NV(Θ, ip)
G = group(Π(θip),asn)
allocations = new_associative_array()

for (asn,X) ∈ G do
I← next unallocated IP block
set_key(allocations, asn, I)
for x ∈ X do
i← next unallocated IP from I

τloopback0 ← get_lo_zero(θi, x)
set_label_t(τloopback0, loopback, i)
set_label_t(τloopback0, prefix, 32)

end for
end for
set_label_θ(θip, loopback_allocations, allocations)

end function

Infrastructure Address Allocation

The other set of network addresses allocated in the network are the
infrastructure addresses, allocated to the physical interfaces. As with
loopback IP addresses, infrastructure IP addresses must be globally
unique across the network. We allocate the infrastructure IP ad-
dresses such that they are grouped by the autonomous system to
which the Network Element belongs. This allows us to aggregate
and advertise a block prefix, over the eBGP exterior routing protocol.
The infrastructure IP addresses are allocated in two stages. The first
stage allocates a subnet block to each Pseudo Network Element that
represents a broadcast domain. The second stage iterates over the
interfaces connected to this broadcast domain, and allocates an in-
dividual IP address from the subnet block of that broadcast domain
Pseudo Network Element.

This example contains only point-to-point network links between
routers, so each broadcast domain connects exactly two Network Ele-
ments. This is due to the simplifying assumption made in Chapter 4,
which simplifies the allocation of subnets. A more generalised ap-
proach, discussed in Section 9.3.1 looks at the degree of the broadcast
domain Pseudo Network Element to determine the appropriate size
subnet block to be allocated to that broadcast domain. Here the
degree is always exactly two.
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We follow a similar approach to the loopback address allocation
example, where we allocate a label to represent the subnet. Here
we use a simplified allocation algorithm which maps a unique letter
to each broadcast domain Pseudo Network Element. This is a gen-
eralised form of an IP address allocation algorithm. An extension
would consider the network structure in allocating these labels. For
instance in autonomous system 2, the point-to-point subnets have
been allocated the labels I, J, and K. In order to signify the advertise-
ment of network prefixes through the routing protocols, these labels
would be allocated from the same parent subnet block.

Regardless of the specific labels are allocated, the rest of the ap-
proach continues as follows. Once the subnet label has been allocated
to a broadcast domain, the next step is to map the individual IP
addresses onto the appropriate Network Element Interfaces. These
interfaces are the physical Network Element Interfaces of the router
Network Elements. This can be performed by iterating over each
broadcast domain Pseudo Network Element in the Network View.
These can be selected using the filtering and selection primitives.
The next step is to iterate over each of the remote Network Element
Interfaces, of the router Network Element, there is connected to this
broadcast domain Pseudo Network Element. These remote Network
Element Interfaces can be obtained using the Neighbor Network Ele-
ment Interfaces Low-Level Primitive presented in Figure D.2.4.

The subnet labels allocated to the broadcast domains of the Net-
work Elements present a sequence of IP addresses, that belong to
that specific subnet. We allocate the first IP address from the se-
quence to the first network interface obtained using the neighbour
Network Element Interfaces Low-level primitive. We allocate the
second IP address from the sequence to the second Network Element
Interface. This would continue on, if there were more Network El-
ement Interfaces on the broadcast domain. This demonstrates how
such an approach of allocation and then iteration can scale to larger
broadcast domains, such as those created from the use of a switch, as
we will see in Section 5.7.1. Once the loopback and infrastructure IP
addresses have been allocated, they can be used like any other label in
subsequent stages of the design and configuration generation process.
A pseudo-code example of the IP Address infrastructure allocation
component of the Design Function is shown in Algorithm 5.8.
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Algorithm 5.8 Pseudo-Code for Infrastructure Allocation component
of IP Address Design Function

function IP Infrastructure Component(Θ)
allocations = new_associative_array()

X = {πi∀πi ∈ Π(θip) | λΠ(θip,πi, broadcast_domain) =

True}
for x ∈ X do
I← next unallocated IP block
set_key(allocations, asn, I)
set_label_Π(x, ip, i)
set_label_Π(x, prefix, 24)
for τneigh ∈ neigh_nei_ne(x) do
i← next unallocated IP from I

set_label_t(τneigh, ip, i)
set_label_t(τneigh, prefix, 24)

end for
end for
set_label_θ(θip, infrastructure_allocations, allocations)

end function

Summary

In this section we have demonstrated the Design Functions used to
perform IP Addressing for both Loopback and Infrastructure address
allocations. These can be combined to form the complete IP Address
Design Function. We show an implementation of the IP Address De-
sign Function in Figure 7.4.3, and discuss how this could be extended
in Section 9.3.1.

5.6.4 Layer 2 Connectivity Design Function
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This Design Function explodes all broadcast domains from the
Layer 2 Network View. A pseudo-code example of this Design Func-
tion is shown in Algorithm 5.9, and the resulting topology shown in
Figure 5.16.
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Figure 5.16: Layer 2 Connectivity Network View

Algorithm 5.9 Pseudo-Code for Layer 2 Connectivity Design Func-
tion

function Layer 2 Connectivity Design Function(Θ)
θlayer_2 ← createθ(Θ, layer_2)
θlayer_2_broadcast ← add_ne(θlayer_2)

X← {πi∀πi ∈ Π(θlayer_2) | λΠ(θlayer_2,πi,broadcast_domain) =
True}

θlayer_2_broadcast ← explode(θlayer_2_broadcast,X)
end function

5.6.5 OSPF Design Function
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The OSPF Design Function constructs the OSPF Network View. It
produces the Network View shown in Figure 5.17.

The OSPF Network View is used for the configuration of the OSPF
routing protocol. We add all router Network Elements from the Layer
2 Connectivity Network View. The Network Element Connections in
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Figure 5.17: OSPF Network View

the OSPF Network View represent the adjacencies between routers in
the OSPF routing protocol. We then add the Network Element Con-
nections from the Layer 2 Connectivity Network View, but first apply
a filter to retain only those which connect two Network Elements in
the same autonomous system. This step retains the Network Element
Interface bindings on the Network Element Connections from the
Layer 2 Connectivity View. A pseudo-code example of the OSPF
Design Function is shown in Algorithm 5.10.

Algorithm 5.10 Pseudo-Code for OSPF Design Function
function OSPF Design Function(Θ)
θospf ← createθ(Θ,ospf)
X← (Πrouters(θlayer_2_conn)

θospf ← add_ne(θospf,X)
Y ← (E(θlayer_2_conn))

Y ′ ← {ε ∈ Y | λASN(Πv(ε)) = λASN(Πu(ε))} . Filter to same
ASN

θospf ← add_nec(θospf, Y ′)

end function
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5.6.6 iBGP Design Function
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Figure 5.18: iBGP Network View

The iBGP Network View represents the configuration for the iBGP
routing protocol. iBGP is responsible for sharing the routes learnt
from other autonomous systems over eBGP into the autonomous
system. The iBGP Design Function is used to produce the Network
View shown in Figure 5.18. A number of different design approaches
are available for how an iBGP topology is constructed. The simplest
topology is a full mesh, where each router establishes an iBGP session
to every other router in the same autonomous system. While this ap-
proach has scalability limitations it is suitable for this example given
the small size of each autonomous system. We discuss the scalability
of iBGP in Section 5.7.3, and in the case studies in Chapter 8.

The iBGP Design Function first creates the Network View and adds
the routers from the Physical Network View. This Design Function
differs to that of the OSPF and eBGP, as we create a full-mesh inde-
pendent underlying physical connectivity. For simplicity we assume
that there is physical connectivity between the Network Elements
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in each autonomous system (i.e. that the physical network is not
partitioned). There are multiple approaches to create a full-mesh for
each autonomous system. One approach is to create the Cartesian
product of all Network Elements in the Network View. This set is
then filtered to remove pairs of repeated Network Elements, e.g (u,v)
where u = v. We then filter this set again to retain only Network
Element pairs with the same autonomous system label.

The Network Element Connections in the iBGP Network View rep-
resent BGP sessions. The Network Element Interfaces in the iBGP
Network View represent the session termination point of the session.
They are associated to an interface which the session is established
on. The iBGP Sessions are not bound to a physical interface, so
we construct a logical Network Element Interface on each Network
Element, and then bind the Network Element Connection to these
newly created logical network interfaces. A pseudo-code example of
the iBGP Design Function is shown in Algorithm 5.11.

Algorithm 5.11 Pseudo-Code for iBGP Design Function
function iBGP Design Function(Θ)
θibgp ← createθ(Θ, ibgp)
X← Πrouters(θphy) . Routers from Physical NetworkView
θibgp ← add_ne(θibgp,X)
{(πi,πj)∀(πi,πj) ∈ X×X | πi 6= πj ∧ λasn(πi) = λasn(πj)} .

Non-self-loop same-ASN NE pairs in cartesian product of X
for {πu,πv} ∈ Y do
τu ← Tu(θphy, εi)
θibgp, τsession_u ← add_lnei(θibgp,piu)
τloopback_u ← get_lo_zero(θi,πu)
θibgp ← associate_nei(θibgp,πu, τsession_u, τloopback_u)

τv ← Tv(θibgp, εi)
θibgp,πv, τsession_v ← add_lnei(θibgp,p iv)
τloopback_v ← get_lo_zero(θi,πu)
θibgp ← associate_nei(θibgp, τsession_v, τloopback_v)

θibgp ← add_nec(θibgp,πu, τsession_u,πv, τsession_v)

end for
end function

5.6.7 eBGP Design Function

Finally, we consider the eBGP Design Functions used to construct the
eBGP Network View. These are conceptually the inverse of the OSPF
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Design Function. It can be used to produce the Network View shown
in Figure 5.19.
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Figure 5.19: eBGP Network View

The Network Element Connections in the eBGP Network View
represent BGP sessions. The Network Element Interfaces in the eBGP
Network View represent the session termination point of the session,
and are associated to the interface which the session is established
on. The eBGP Design Function is constructed by first creating the
Network View, and adding the routers from the Layer 2 Connectivity
Network View. We then add the appropriate Network Element Con-
nections: where Network Element Connection exists in the Layer 2

Connectivity Network View, and that Network Element Connection
connects Network Elements that belong to different autonomous sys-
tems.

This can be implemented in the Design Function similar to the
OSPF Design Function. We first iterate over Network Element Con-
nections from the Layer 2 Connectivity Network View. We then filter
this set of Network Element Connections, according to a predicate
which returns true if the autonomous system labels of the Network
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Elements differ. The Network Element Interfaces are used to indicate
the interface that the session is established from. These eBGP Net-
work Element Interfaces can also be used to capture routing policy:
a set of labels can be added to represent the ingress routing policy
applied to routes learnt over the session, or a set of labels added to
represent the egress routing policy applied to routes advertised over
the session.

This demonstrates how our approach of Network Element Interface
bindings on the Network Element Connections, both allows us to
maintain consistency when adding Network Element Connections
from different Network Views, but also to store additional informa-
tion such as policy in the eBGP Network View. A pseudo-code exam-
ple of the eBGP Design Function in shown in Algorithm 5.12.

Algorithm 5.12 Pseudo-Code for eBGP Design Function
function eBGP Design Function(Θ)
θebgp ← createθ(Θ, ebgp)
X← (Πrouters(θlayer_2_conn)

θebgp ← add_ne(θebgp,X)
Y ← (E(θlayer_2_conn))

Y ′ ← {ε ∈ Y | λASN(Πu(ε)) 6= λASN(Θ,Πu(ε))}
for εi ∈ Y do
πu ← Πu(θlayer2 , εi)
τu ← Tu(θlayer2 , εi)
θebgp, τsession_u ← add_lnei(θebgp,piu)
θebgp ← associate_nei(θebgp, τsession_u, τu)
πv ← Πv(θebgp, εi)
τv ← Tv(θebgp, εi)
θebgp, τsession_v ← add_lnei(θebgp,πv)
θebgp ← associate_nei(θebgp,πv, τsession_v, τv)
θebgp ← add_nec(θebgp,πu, τsession_u,πv, τsession_v)

end for
end function

5.6.8 Conclusion

In this section we have shown how the use of the Low-level and
High-level Primitives described in Section D.2 and Section D.3 can be
used to compose Design Functions. These Design Functions can be
used to transform the Network Whiteboard into a series of Network
Views, which represent various aspects of the network configuration
process. The Design Functions allow the declarative high-level policy
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outlined on the Network Whiteboard to be transformed into Network
Views, representing an abstract representation of these aspects of the
configuration process. As will show in the next chapter, these design
views can be used in the code generation step to produce real target
output device configurations. Before we proceed to code generation
we now demonstrate how the framework is extensible to allow for
the addition of new Design Functions.
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5.7 extended design function examples

In this section we provide a number of examples showing how the De-
sign Functions approach can be extended to perform more advanced
network design operations. We use the techniques discussed here in
the case studies in Chapter 8.

We first look at example of how network topology with switches
can be used to form the resulting Layer 2 broadcast domains and
Layer 2 connectivity. These can then be used for the configuration
of higher-level IP address allocation and routing protocols. We then
look at using VLANs to create virtual LANs, which extends the pre-
vious example to cater for virtual network devices. The result of
these Design Functions is a Layer 2 broadcast domain and Layer 2

Connectivity Network View that can be used by the high-level layers,
in the same way as if virtual LANs were not used. This shows the
extensibility of our approach by breaking the design steps into a
separation of concerns. Finally, we look at extending the scalability
of the iBGP protocol using route-reflection, rather than a full-mesh of
all iBGP routers.

5.7.1 Introduction of Layer 2 Switches

Extended Layer 2
Design Function

Physical Network 
View

Layer 2 Network 
View

Figure 5.20: Workflow for extended Layer 2 Design Function to handle
Switches

This section presents an example of a topology design with Net-
work Elements that have the Switch Role. The workflow for this is
shown in Figure 5.20. Switches operate at layer 2 of the OSI reference
model. The connectivity of switches influences the connectivity at
layer 3, the IP layer. All devices connected to the same switch belong
to what is known as the Broadcast domain. At the IP layer, these
devices are connected directly to each other. In order to accurately
generate the configurations at the IP layer, such as for IP addressing,
or for the routing protocols, we need to form the IP connectivity,
the results from the switches. To do this, we need to consider the
interfaces which connected to the switches, and then connect these
together. We do this by forming a Layer Two Network View, based
on the physical connectivity of the physical Network View, and the
roles of the devices. For this example, we consider two types of device
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roles: routers and switches. This can be generalised further to other
layer 3 devices, such as firewalls, and end hosts such as servers.

We use the explode High-Level primitive which explodes out the
switch, to form a clique of the interfaces connected to that switch. We
note that in this scenario, an interface may have more than one net-
work connection. This highlights the value of the approach discussed
in Chapter 4, where we use an interface and node centric approach,
to store configuration data, rather than storing the information on the
Network Element Connections themselves. By using the approach of
interface bindings, we are able to retain this binding across the Net-
work Views, and in particular, allow multiple network connections to
be bound to the same Network Element Interface. The simplest case
is a single switch connected to multiple routers. For this case we can
use the explode function directly, where we explode any Network
Element that has the role of switch. A more advanced scenario is
where multiple switches are connected together. We then would need
to first use the merge function to merge multiple switches that are
directly connected. This forms the resulting interconnected switch,
which can be exploded to form the resulting layer 2 connectivity.

Example

The example in Figure 5.21 demonstrates these steps. This example
has a Network Whiteboard consisting of six routers and two switches,
as shown in Figure 5.21a. These switches are directly connected to
each other, and so any device connected to the switches will be in the
same broadcast domain.

The Network Elements labelled 2, 5, 6, and 8, are directly connected
to the switches, and so are connected at layer 2. Network elements
labelled 1 and 3 are not connected to the switches, and therefore their
connectivity at layer 2 will be the same as in the Network Whiteboard
and Physical Network Views.

The first step is to select the Network Elements that have the role
of switch, using the selection and filtering primitives. This will select
Network Elements 4 and 7. In this example, these two devices are
directly connected to each other, and therefore will be merged. A
generalisation would be to first select the Network Elements with the
role of switch and then perform an analysis of connected components,
using the Connected Components High-Level Primitive. By first se-
lecting the switches, and then looking at the connected components
we can determine which switches are to be merged together.

For this example, we only have one set of connected components,
which is due to the Network Element Connection between Network
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Elements 4 and 7. Now that we have determined this broadcast
domain, can merge these two switches, using the merge high-level
primitive. This creates a new Pseudo Network Element, which is
labelled as P1 as shown in Figure 5.21b. We note here that the
interface bindings of devices 2, 6, 5 and 8 have been retained, in the
connectivity to the Pseudo Network Element. This allows the rela-
tionship of the Network Element Interfaces across Network Views to
be used in the subsequent Design Functions, and in the configuration
generation. In order to model the broadcast domains in the Layer
2 Network view, we also need to create broadcast domains for the
point-to-point links, between Network Elements 1 and 2, Network
Elements 3 and 5. This can be done by selecting all of the Network
Elements in the network, which connect to devices that have a role
that is determined to be layer 3, such as a router. We then apply the
split function to these Network Elements giving Pseudo Network
Elements p2 and p3. The Network Element Interface bindings from
these Network Elements 1, 2, 3, and 5 are retained.

The result of these operations is shown in Figure 5.21c. This Net-
work View shows the broadcast domains in the network, and consists
of Network Elements of the role of router, which is Network Elements
1, 3, 4, 5, 6, and 8; and the Network Elements which represent the
broadcast domain connectivity, using Pseudo Network Elements p1,
p2, and p3. This resulting Network View is the Layer 2 Network View,
and can be used for IP address allocation as discussed in Section 9.3.1.

As well as the Layer 2 Network View, some network Design Func-
tions operate on the Layer 2 Connectivity, which arises from the
broadcast domains. To avoid repetition, we can form a Layer 2 Con-
nectivity View by exploding each of the Pseudo Network Elements
that represent broadcast domains of the Layer 2 Network View. The
result of this operation is shown in Figure 5.21d. This has an effect
on the Layer 2 Network View, the IP addressing view, and OSPF and
eBGP connectivity. We introduce this as the Layer 2 Connectivity
Network View.

We first aggregate switches to form the broadcast domains, which
are then used for IP allocation. We then explode the broadcast do-
main pseudo nodes to form the Layer 2 connectivity. This can then be
used by the routing protocols (OSPF, eBGP) to determine connectivity,
instead of the physical Network View. A worked example of this
process can be see in Figure 5.21.
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Figure 5.21: Example of Design Functions using Switches to transform
Network Whiteboard into Layer 2 Connectivity.
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5.7.2 Managed Switches and VLANs

VLAN
Design Function

Physical Network 
View

VLAN Network 
View

Layer 2 Network 
View

IP Address
Design Function

IP Address 
Network View

Layer 2 Connectivity 
Design Function

Layer 2 Conn
Network View

Figure 5.22: Flowchart of Network View construction for VLANs

This section expands on the switch example in Section 5.7.1 by
allowing managed switches, which can be partitioned according to
the VLAN labels set on an interface. Virtual LANs provide an ability
to separate a single managed switch into multiple virtual switches.
An interface on a switch can be tagged with a VLAN attribute, which
represents the virtual switch that that interface belongs to. Multiple
many switches can be connected together, with a protocol such as
the VLA0.85N trunking protocol being used to exchange information
about the VLANs configured on the managed switches.

For network design, the resulting virtual LAN segments created by
the VLANs have an effect on the higher-level protocols, including
IP address allocation and IP connectivity. The network topology
resulting from the VLAN configuration therefore needs to be consid-
ered when allocating IP addresses, and when setting up the routing
protocols. An example of the use of VLANs to divide a managed
switch into multiple virtual LAN segments is shown in Figure 5.23.

This consideration can be handled by building the IP addressing
and routing protocol topologies from the connectivity of the VLAN
configuration. Rather than building the IP addressing and routing
protocol configurations directly from physical connectivity, we in-
stead build it from the connectivity resulting from the VLAN config-
uration. The VLANs themselves can be configured by setting a label
on the appropriate interface of a managed switch in the Network
Whiteboard. This information can be used with the management
connectivity to form the VLAN domains.

In this section we provide an example of how the high-level prim-
itives discussed previously such as the split, merge, and explode

functions, can be used together with the VLAN labels of the Net-
work Whiteboard, to build the layer 2 connectivity resulting from the
VLANs. This can then be used as the input Network View to the
Design Functions for the IP addressing and routing Network Views.
An example is shown in Figure 5.22 and example output shown in
Section 5.7.2.
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Figure 5.23: Conceptual view of VLANs. Managed switches 4, 5 and 8 are
divided using VLANs 2, 3 and 4. Trunk links between virtual
LAN segments are shown as thicker lines.

The Network Whiteboard is shown in Figure 5.24, where the switches
form two domains, one with switches 4, 5, and 8, and one with
switches 10 and 14. These are merged in Figure 5.25 to form the
Pseudo Network Elements p1 and p2. These are then expanded in
Figure 5.26 based on the VLAN labels. p1 is expanded to p1, p2 and
p3, representing VLANs 1, 2 and 3. p2 from the previous step is
expanded to p4 and p5 representing VLANs 1 and 2. Routers are
connected to the appropriate VLAN Pseudo Network Element de-
pending on their connectivity in the previous step. Finally, the layer
2 connectivity is formed by exploding the VLAN Pseudo Network
Elements as shown in Figure 5.27.
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5.7.3 iBGP Scalability

Enhanced iBGP 
Design Function

Physical Network 
View

iBGP Network 
View

Figure 5.28: Workflow for Enhanced iBGP Design Function

In this section we describe how the iBGP Network View can be ex-
tended for scalability. The workflow for this is shown in Figure 5.28.

The default iBGP topology that we have constructed is been a
full-mesh, where every router in an autonomous system, connects
to every other router in the same autonomous system. This is a
scalability issue for larger networks, as it produces O(N2) connec-
tions. Adding a new router would require not only creating N new
iBGP sessions on the router, but also needing to touch every other N
routers in that autonomous system to establish the peering to the new
router. There are two commonly used methods to increase scalability.
One of these is the use of a route reflector, which acts as a central
point to which the other routers establish a peering. This introduces
hierarchy, which improves scalability. Another option is the use of
confederations. While we do not discuss confederations here, we note
that our approach could be adapted to configure confederations.

We now discuss how the Design Function approach can be ex-
tended to configure route reflection. We will consider two cases of
route reflection. The first is where the user annotate the Network
Whiteboard using labels to indicate the router(s) that will act as route
reflectors. The second is an algorithmic based approach, which auto-
matically selects the most central routers as the route reflectors.

iBGP Topology

In our iBGP Network View, we represent a peering using a Network
Element Connection. A Network Element Connection in the iBGP
Network View between Network Elements A and B implies repre-
sents a BGP session established from A to B and also from B to A.
Our approach could also allow a single session to be established
by adding a label to the Network Element Interface on a Network
Element Connection.

Additionally, for a hierarchical topology, we need to consider an-
notating these sessions. Consider the diagram below, shown as Fig-
ure 5.29. In this, we have a number of routers, forming an iBGP
hierarchical topology.

148



5.7 extended design function examples
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Figure 5.29: Topology showing basic route reflector hierarchy

We then establish iBGP sessions using Network Element Connec-
tions. In this case we have two types of sessions: a peering session
between two routers acting in the same role, such as both as route re-
flectors; and a client/server relation session between a route reflector
and a route reflector client.

These relation types are important in configuring the session in the
device configuration. As an example, on Cisco IOS the session from
a Route Reflector to a Route Reflector Client has the keyword “route-
reflector-client” specified in the session configuration syntax. Denot-
ing these client/server relationships also allows for the application of
verification rules, such as checking for potential oscillation scenarios.
We will discuss possible verification approaches in Section 9.3.3.

Role-Based Assignment

The first approach makes use of the Network Whiteboard, where we
introduce a new route-reflector label. This label is set to True on the
Network Elements which we wish to have the role of route reflector,
and False otherwise. If unset we assume it is False.

To construct the enhanced iBGP Network View, we follow the same
basic steps as for the previous iBGP Network View. We first construct
the Network View, then step add the router Network Elements. We
then introduce a new step, that copies the route-reflector label from the
Network Whiteboard to the enhanced iBGP Network View.

We then create the Network Element Connections, using a different
approach to the simple case. We first examine each set of Network
Elements, grouping them by their autonomous system label.

Within each set of Network Elements we then divide the Network
Elements into two subsets. The first is the set of route reflectors (the
Network elements where the the route reflector label is True) from the
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Network Whiteboard. We refer to this as Subset A. The second subset
is the set of Route Reflector Clients. This is a set of Network Elements
in the autonomous system group where the route reflector label is set
to False. It can also be found as the set difference of the set of Network
Elements in an autonomous system, minus the set of route reflector
Network Elements. We refer to this as Subset B. We then establish
Network Element Connections according to the following rules:

• We establish a Network Element Connection between each pair
of Route Reflectors which belong to the same autonomous sys-
tem. This can be performed by creating a full-mesh of the
Network Elements in Subset A.

• We establish Network Element Connections between Network
Elements in Subset A and Network Elements in Subset B.

Allocating Session Directionality Labels

As discussed in the previous section, we have three types of sessions.
These are over sessions between two route reflectors, up sessions, from
a route reflector client to a route reflector, and down sessions from a
route reflector to a route reflector client.

We can allocate this directionality label to the Network Element In-
terfaces of a Network Element Connection in the iBGP Network View.
We iterate over the Network Element Connections in this Network
View, and look at the route reflector Role label of the Network Ele-
ments the Network Element Connection connects. We can allocate a
directionality label to the Network Element Interface, according to the
role of the Network Element and neighbouring Network Elements.

The relationship of the roles and the resulting Network Element
Interface label, are shown in Table 5.6. The first column shows the
Route Reflector Role label of Network Element A, and the second
column shows the Route Reflector Role label of Network Element
B. The third column shows the resulting Route Reflector Direction
label on Network Element Interface A. The fourth column shows
Route Reflector Direction label on Network Element Interface B. The
different session labels are shown in Figure 5.30.Automatic Assignment

An extension of this approach where we use roles, would be to allo-
cate the iBGP Route Reflector Role labels automatically. This could
be done using a graph algorithm. This makes use of the fact that
we represent our topologies using a network graph. This could use
an algorithm such as a centrality algorithm, to find the Network
Elements in an autonomous system according to a set of criteria, such
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Table 5.6: Route Reflector Roles and Directions

NE A RR Role NE B RR Role NEI B RR Direction NEI B RR Direction

R R O O

R C D U

C R U D

C C - -

RR OO

(a) Route Reflector to Route Reflector ses-
sion, with Network Element Interfaces A
and B labelled with O for Over.

CR UD

(b) Route Reflector Client to Route Reflector
session, with Network Element Interface
A labelled U for Up, and Network Ele-
ment Interface B labelled D for Down.

RC DU

(c) Route Reflector to Route Reflector Client
session, with Network Element Interface
A labelled D for Down, and Network
Element Interface B labelled U for Up.

Figure 5.30: Assignment of Route Reflector Directionality labels to Network
Element Interfaces based on the Route Reflector label of their
Network Elements

as the most central Network Element(s) from the connectivity in the
Physical Network View.

This example shows the flexibility in using labels. These labels
could either be presented manually by the user on the Network White-
board, or allocated algorithmically. Regardless of which is used, the
rules in the Design Function, for establishing the Network Element
Connections, and denoting the type of session on the Network Ele-
ment Interfaces, are identical for both the manual, and the automati-
cally allocated case.

5.7.4 Conclusion

In this section we have shown that the Design Function approach al-
lows the approach to be extended to accommodate different network
design requirements.
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5.8 transfer function approach

In this section we provide an overview of how the Design Function
approach described in this Chapter to produce the Network Views in
the Abstract Network can be viewed as a transfer function applied
to the Network Whiteboard. For simplicity we assume the Design
Functions return a Network View θi, as this is a more functional
approach than adding each thetai to the Network Whiteboard Θ as
performed in the Design Functions shown in Section 5.6.

fphy(ωi) = θphy

fl2(θphy) = θl2

fl2conn(θl2) = θl2conn

fip(θl2) = θip

fospf(θlayer_2conn) = θospf

fibgp(θphy) = θibgp

febgp(θlayer_2conn) = θebgp

(5.1)

fphy(ωi) = θphy

flayer_2(fphy(ωi)) = θlayer_2

flayer_2conn(fl2(fphy(ωi))) = θl2conn

fip(fl2(fphy(ωi))) = θip

fospf(fl2conn(fl2(fphy(ωi)))) = θospf

fibgp(fphy(ωi)) = θibgp

febgp(fl2conn(fl2(fphy(ωi)))) = θebgp

(5.2)

For each function f we define a modified version f ′ which takes
the complete Abstract Network Model Θ rather than an individual
Network View θi. This can be performed by a selection function to
obtain θi from Θ,

f ′phy(ωi) = θphy

f ′l2(ωi) = θl2

f ′l2conn(ωi) = θl2conn

f ′ip(ωi) = θip

f ′ospf(ωi) = θospf

f ′ibgp(ωi) = θibgp

f ′ebgp(ωi) = θebgp

(5.3)
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Θ = (θphy, θl2, θl2conn, θip, θospf, θibgp, θebgp)

= (fphy ′(ωi), fl2 ′(ωi), fl2conn ′(ωi),

fip ′(ωi), fospf ′(ωi), fibgp ′(ωi), febgp ′(ωi))

= F(ωi)

(5.4)

Therefore the Abstract Network Model, Θ can be produced by
applying the transfer function F to the Network Whiteboard ωi.

We continue this discussion in Section 6.6 to demonstrate how the
set of low-level device configurations can be built from the Network
Whiteboard.

5.9 conclusion

Our approach provides a workflow for the systematic construction
of Network Views. Network Views can have a dependence on other
Network Views. A simple example is the IP addressing Network
View being dependent on the Layer 2 Network View. The Design
Process allows for this modular flow to be incorporated, by an or-
dered construction of the Design Functions to construct the Network
Views. The approach of Design Functions has addressed Research
Question 3: How can declarative High-Level Network Policy descriptions
be transformed into a graph-based intermediate format using a compiler that
is extensible in terms of new types of policies and new protocols?
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G E N E R AT I O N O F L O W- L E V E L D E V I C E
C O N F I G U R AT I O N S TAT E

6.1 introduction

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Template
Assembler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

Figure 6.1: Toolchain highlighting Compilation process

In the previous chapter we have described how Network Views are
generated from transformations of the Network Whiteboard using
Design Functions. From the point of view of the network engineer,
and their ability to make use of this information, the intermediate
format in which the Network Views are represented is central. This
intermediate format provides a clean, device-independent descrip-
tion of the network. However to make the network design practical,
this intermediate format needs to be translated into the language of
network devices. Device configuration languages are diverse, com-
plex and sometimes inconsistent.

Device configurations use a low-level syntax, which varies between
network device vendors, or even within devices produced by the
same vendor. However, the network configuration state needs to be
consistent across the network, as discussed in Chapter 4 and Chap-
ter 5. In this chapter we discuss how the globally consistent network
state, expressed using Network Views can be transformed into the
low-level vendor-specific device configurations suitable for individ-
ual network device configurations. This is shown in the toolchain
steps highlighted in Figure 6.1.

This transformation process, which we denote as Low-Level Con-
figuration Generation Process consists of two phases: a high-level
phase which transforms the Network Views into Intermediate Device
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Models, and a low-level assembly phase, where the Intermediate
Device Models are used to generate device configuration syntax using
templates. The high-level phase handles the more complex aspects of
Low-Level Configuration Generation Process. The leads to a simplifi-
cation of the low-level phase, allowing the pure template-driven code
generation approach outlined by Arnoldus et al. [4].

In this chapter we will show how this approach addresses Research
Question 4: How can the configurations for a diversity of network devices
be generated systematically from a graph-based intermediate representation?

Consider the Network Views in the Abstract Network Model shown
in Figure 6.2. Each horizontal plane represents a Network View,
and each vertical dashed line corresponds to a single device across
each of the Network Views to which it belongs. To generate each
individual device configuration we take a vertical slice across the
Abstract Network Model.

6.1.1 Chapter Overview

This chapter is organised as follows. We first provide an overview of
the key concepts in the two main phases of the Low-Level Configura-
tion Generation process. This is shown in Figure 6.3. This includes
the artefacts created, such as the Intermediate Hardware Model and
the process that creates these artefacts, such as the Platform and
Device Compilers.

We then examine the artefacts and processes, and provide a de-
tailed discussion of the Platform Compiler and Device Compilers,
which transform the Abstract Network Model discussed in Chap-
ter 4 into the Intermediate Hardware Model and Intermediate De-
vice Model. We next provide an example of the first phase com-
piler process, looking at the steps performed to generate the relevant
configuration structure for the interfaces, and the OSPF, iBGP and
eBGP routing protocols, for a single device in the Small Internet Case
Study from Chapter 4 and Chapter 5. Finally, we discuss phase two
which generates the final device configurations through the use of
templates.
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Figure 6.2: Cross-section illustration of the set of Network Views in the Ab-
stract Network Model for the Simplified Small Internet Example,
as shown in Figure 4.43. Vertical lines represent the association
of Network Elements across Network Views. Each horizontal
plane corresponds to a Network View. The Layer 2 Network
Views have been omitted for visual simplicity. Conceptually, a
device can be compiled by vertical traversal of a Network Element
along a vertical dashed line between the planes.
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Figure 6.3: Overview Flowchart of Low-Level Configuration Generation
Process. The Abstract Network Model is the intermediate format
containing Network Views. Note that the Network Whiteboard
may be used as input to the process as it may contain the types
of network device physical properties.
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6.2 motivation : device syntax variations

We first present a motivating case study of the differences between
the low-level device configuration syntax used in different router
operating systems. We look at an OSPF example with the interface
names, OSPF areas, and OSPF costs shown in Figure 6.4. IP addresses
are allocated as shown in Figure 6.5. We look at how the interface
and Network Element r3 would be configured on Quagga, Cisco IOS,
Cisco IOS-XR, Cisco NX-OS, and Juniper Junos. The interface naming
varies by target platform, and is based on the prefix of interface name
shown in Figure 6.4.

Area 1 Area 0

r2

r3

r4

r6

r1

e3,1

e1,1

e0,1

e0,1

e1,10

e1,1

e0,1

e0,5

e2,1
e2,1

Figure 6.4: Example OSPF Network View. Network Element Interface labels
show an example interface name and an OSPF cost.

.6
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.2
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.26
.25

.42

.41

.37

.33

.34

.29
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Figure 6.5: Example OSPF Network View, where Network Elements show
the final octet of the 10.0.0.x/32 allocation, and Network Element
Interface labels show final octet of the 192.168.0.x/30 allocation.
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6.2.1 Quagga

Quagga has two configuration files, one for the routing process (ze-
bra.conf) and one for the OSPF process (ospfd.conf). An example of
the interface and OSPF configuration for Quagga is shown in List-
ing 6.1. The zebra.conf is responsible for specifying the IP address to
use on each interface. The ospfd.conf sets the cost on each interface,
and the set of networks to advertise with their relevant area attribute.
The loopback interface is configured as passive. An example refer-
ence Intermediate Device Model that reflects this structure is shown
in Listing 6.2. This has an interface block and an ospf block.

!
! zebra.conf
!
hostname r3
interface eth0
ip address 192.168.0.34/30

interface eth1
ip address 192.168.0.38/30

interface eth2
ip address 192.168.0.30/30

interface eth3
ip address 192.168.0.26/30

interface lo:1
ip address 10.0.0.7/32

!
!
!
! ospfd.conf
!
hostname r3
interface eth0
ip ospf cost 5

interface eth1
ip ospf cost 10

interface eth2
ip ospf cost 1

interface eth3
ip ospf cost 1

!
passive-interface lo:1
!
router ospf
network 10.0.0.7/32 area 0
network 192.168.0.32/30 area 0
network 192.168.0.36/30 area 1
network 192.168.0.28/30 area 0
network 192.168.0.24/30 area 1

!
!

Listing 6.1: Quagga interface and OSPF
configuration

{ "hostname": "r3",
"interfaces": [
{
"id": "eth0",
"cidr": "192.168.0.34/30"
}, {
"id": "eth1",
"cidr": "192.168.0.38/30"
}, {
"id": "eth2",
"cidr": "192.168.0.30/30"
}, {
"id": "eth3",
"cidr": "192.168.0.26/30"
}, {
"broadcast": null,
"id": "lo:1",
"cidr": "10.0.0.7/32"
}
],
"ospf": {
"interfaces": [
{"cost": 5, "id": "eth0" },
{"cost": 10, "id": "eth1" },
{"cost": 1, "id": "eth2" },
{"cost": 1, "id": "eth3" }
],
"networks": [
{ "area": 0,
"network": "10.0.0.7/32"},
{ "area": 0,
"network": "192.168.0.32/30" },
{ "area": 1,
"network": "192.168.0.36/30" },
{ "area": 0,
"network": "192.168.0.28/30" },
{ "area": 1,
"network": "192.168.0.24/30" }

],
"passive_interfaces": [
{ "id": "lo:1" }

] } }

Listing 6.2: Example Quagga
Device Model
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6.2.2 Cisco IOS

An example of the interface and OSPF configuration is shown in
Listing 6.3. We can see similarities to the configuration of Quagga.
The key difference is the single set of interface listings, with the OSPF
cost set on the interface along with the IP Address. The networks to
be advertised follow a similar format to Quagga, listing the prefix
and areas. An example reference Intermediate Device Model shown
in Listing 6.4 reflects these similarities and differences between IOS
and Quagga.

!
hostname r3
!
interface Ethernet0/0
ip address 192.168.0.34 255.255.255.252
ip ospf cost 5
no shutdown

interface Ethernet0/1
ip address 192.168.0.38 255.255.255.252
ip ospf cost 10
no shutdown

interface Ethernet0/2
ip address 192.168.0.30 255.255.255.252
ip ospf cost 1
no shutdown

interface Ethernet0/3
ip address 192.168.0.26 255.255.255.252
ip ospf cost 1
no shutdown

interface Loopback0
ip address 10.0.0.7 255.255.255.255

!
router ospf
network 192.168.0.32 0.0.0.3 area 0
network 192.168.0.36 0.0.0.3 area 1
network 192.168.0.28 0.0.0.3 area 0
network 192.168.0.24 0.0.0.3 area 1
network 10.0.0.7 0.0.0.0 area 0
passive-interface Loopback0

Listing 6.3: IOS interface and OSPF
configuration

{ "hostname": "r3",
"interfaces": [
{ "id": "Ethernet0/0",
"ip": "192.168.0.34",
"netmask": "255.255.255.252",
"ospf_cost": 5,
"shutdown": false },
{ "id": "Ethernet0/1",
"ip": "192.168.0.38",
"netmask": "255.255.255.252",
"ospf_cost": 10,
"shutdown": false },
{ "id": "Ethernet0/2",
"ip": "192.168.0.30",
"netmask": "255.255.255.252",
"ospf_cost": 1,
"shutdown": false },
{ "id": "Ethernet0/3",
"ip": "192.168.0.26",
"netmask": "255.255.255.252",
"ospf_cost": 1,
"shutdown": false },
{ "id": "Loopback0",
"ip": "10.0.0.7",
"netmask": "255.255.255.255" }

],
"ospf": {
"networks": [
{"area": 0,
"hostmask": "0.0.0.3",
"prefix": "192.168.0.32"},
{"area": 1,
"hostmask": "0.0.0.3",
"prefix": "192.168.0.36"},
{"area": 0,
"hostmask": "0.0.0.3",
"prefix": "192.168.0.28"},
{"area": 1,
"hostmask": "0.0.0.3",
"prefix": "192.168.0.24"},
{"area": 0,
"hostmask": "0.0.0.0",
"prefix": "10.0.0.7"}

],
"passive_interfaces": [
{"id": "Loopback0"}

] } }

Listing 6.4: Example IOS Device
Model
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6.2.3 Cisco IOS-XR

An example of the interface and OSPF configuration for Cisco IOS-
XR is shown in Listing 6.5. Here we can see that only the IP address
is configured directly on the interface. The OSPF block is configured
in a different structure, grouped by OSPF area. Within each area, the
interfaces in that area are listed together with their cost. The passive
loopback is configured in the relevant area to which it belongs. An
example reference Intermediate Device Model shown in Listing 6.6,
where the interfaces are grouped by their area.

!
hostname r3
!
interface Ethernet0/0
ipv4 address 192.168.0.34 255.255.255.252
no shutdown

interface Ethernet0/1
ipv4 address 192.168.0.38 255.255.255.252
no shutdown

interface Ethernet0/2
ipv4 address 192.168.0.30 255.255.255.252
no shutdown

interface Ethernet0/3
ipv4 address 192.168.0.26 255.255.255.252
no shutdown

interface Loopback0
ipv4 address 10.0.0.7 255.255.255.255

!
router ospf
area 0
interface Ethernet0/0
cost 5

!
interface Ethernet0/2
cost 1

!
interface Loopback0
passive enable

!
!
area 1
interface Ethernet0/1
cost 10

!
interface Ethernet0/3
cost 1

!
!

Listing 6.5: IOS-XR interface and OSPF
configuration

{ "hostname": "r3",
"interfaces": [
{ "id": "Ethernet0/0",
"ip": "192.168.0.34",
"netmask": "255.255.255.252",
"shutdown": false
}, {
"id": "Ethernet0/1",
"ip": "192.168.0.38",
"netmask": "255.255.255.252",
"shutdown": false
}, {
"id": "Ethernet0/2",
"ip": "192.168.0.30",
"netmask": "255.255.255.252",
"shutdown": false
}, {
"id": "Ethernet0/3",
"ip": "192.168.0.26",
"netmask": "255.255.255.252",
"shutdown": false
}, {
"id": "Loopback0",
"ip": "10.0.0.7",
"netmask": "255.255.255.255"
}
],
"ospf": {
"interfaces_by_area": {
"0": [
{"cost": 5,
"id": "Ethernet0/0"},
{"cost": 1,
"id": "Ethernet0/2"},
{"id": "Loopback0",
"passive": true}

],
"1": [
{"cost": 10,
"id": "Ethernet0/1"},
{"cost": 1,
"id": "Ethernet0/3"}

] } } }

Listing 6.6: Example IOS-XR
Device Model
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6.2.4 Cisco NX-OS

An example of the interface and OSPF configuration for Cisco NX-
OS is shown in Listing 6.7. Here we can see that the IP address is
specified in the CIDR format of a.b.c.d/x. The OSPF configuration
is done directly on the interface, with OSPF process id listed with
the area, and the cost set directly on the interface. The example
reference Intermediate Device Model shown in Listing 6.8 reflects this
flat structure.

!
hostname r3
!
feature ospf
!
interface Ethernet0/0
ip address 192.168.0.34/30
ip router ospf 1 area 0
ip ospf cost 5
no shutdown

interface Ethernet0/1
ip address 192.168.0.38/30
ip router ospf 1 area 1
ip ospf cost 10
no shutdown

interface Ethernet0/2
ip address 192.168.0.30/30
ip router ospf 1 area 0
ip ospf cost 1
no shutdown

interface Ethernet0/3
ip address 192.168.0.26/30
ip router ospf 1 area 1
ip ospf cost 1
no shutdown

interface Loopback0
ip address 10.0.0.7/32
ip router ospf 1 area 0
ip ospf cost

!
router ospf
router-id 10.0.0.7

Listing 6.7: NX-OS interface and OSPF
configuration

{ "hostname": "r3",
"interfaces": [
{
"cidr": "192.168.0.34/30",
"id": "Ethernet0/0",
"ospf_area": 0,
"ospf_cost": 5,
"ospf_process_id": 1,
"shutdown": false
}, {
"cidr": "192.168.0.38/30",
"id": "Ethernet0/1",
"ospf_area": 1,
"ospf_cost": 10,
"ospf_process_id": 1,
"shutdown": false
}, {
"cidr": "192.168.0.30/30",
"id": "Ethernet0/2",
"ospf_area": 0,
"ospf_cost": 1,
"ospf_process_id": 1,
"shutdown": false
}, {
"cidr": "192.168.0.26/30",
"id": "Ethernet0/3",
"ospf_area": 1,
"ospf_cost": 1,
"ospf_process_id": 1,
"shutdown": false
}, {
"cidr": "10.0.0.7/32",
"id": "Loopback0",
"ospf_area": 0,
"ospf_process_id": 1
}
],
"ospf": {"router_id": "10.0.0.7"}
}

Listing 6.8: Example NX-OS
Device Model
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6.2.5 Juniper Junos

An example Junos configuration is shown in Listing 6.9. We can
see a braces-based structure rather than indentation. Interfaces are
configured with the CIDR address format, within a unit0 block. OSPF
interfaces are grouped by area, and specified with their cost. The
Intermediate Device Model is shown in Listing 6.10.

interfaces {
Ethernet0/0 {
unit 0 {
family inet {
address 192.168.0.34/30;

}
}

}
Ethernet0/1 {
unit 0 {
family inet {
address 192.168.0.38/30;

}
}

}
Ethernet0/2 {
unit 0 {
family inet {
address 192.168.0.30/30;

}
}

}
Ethernet0/3 {
unit 0 {
family inet {
address 192.168.0.26/30;

}
}

}
lo0 {
unit 0 {
family inet {
address 10.0.0.7/32;

}
}

}
protocols {
ospf {
area 0 {
Ethernet0/0 {
metric 5;

}
Ethernet0/2 {
metric 1;

}
lo0 {
passive;

}
}
area 1 {
Ethernet0/1 {
metric 10;

}
Ethernet0/3 {
metric 1;

}
}

}
}

Listing 6.9: Junos configuration

{ "hostname": "r3",
"interfaces": [
{
"cidr": "192.168.0.34/30",
"id": "Ethernet0/0"

}, {
"cidr": "192.168.0.38/30",
"id": "Ethernet0/1"

}, {
"cidr": "192.168.0.30/30",
"id": "Ethernet0/2"

}, {
"cidr": "192.168.0.26/30",
"id": "Ethernet0/3"

}, {
"cidr": "10.0.0.7/32",
"id": "lo0"

}
],
"ospf": {
"interfaces_by_area": {
"0": [
{
"id": "Ethernet0/0",
"metric": 5

}, {
"id": "Ethernet0/2",
"metric": 1

}, {
"id": "lo0",
"passive": true

}
],
"1": [
{
"id": "Ethernet0/1",
"metric": 10

}, {
"id": "Ethernet0/3",
"metric": 1

} ] } } }

Listing 6.10: Example Junos
Device Model
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6.2.6 Example Code

The code to setup this example is shown in Listing F.1 and uses
AutoNetkit, a Python implementation of our approach. We introduce
AutoNetkit in Chapter 6. The base device compiler is shown in List-
ing F.2. The other compilers and templates are as shown in Table 6.1.
Finally, the code to compile and render the configurations is shown
in Listing F.14.

Table 6.1: Summary of example code for OSPF example

Target Device Compiler Template

Quagga Listing F.3 Listing F.9

IOS Listing F.4 Listing F.10

IOS-XR Listing F.5 Listing F.11

NX-OS Listing F.6 Listing F.12

Junos Listing F.7 Listing F.13

6.2.7 Discussion

In this example we have shown how expressing the same interface
and OSPF configuration can vary between different low-level device
syntaxes., with some expressing OSPF configuration on the interface,
some in the OSPF block per-interface, and others grouped by the
OSPF area.

We have seen that the difference between the braces and indenta-
tion formatting in Junos is abstracted away by the templates, with
the Intermediate Device Model similar to that of IOS-XR. We have
also seen similarities between the configurations for IOS and Quagga.
These similarities hint at patterns, which may allow the re-use of logic
in the Device Compilers.

As we have discussed, there are subtle differences in how different
target devices represent the same set of configuration objectives. We
have also seen common patterns between different devices. These
patterns can differ between the devices, so that one pattern may apply
to device a and device b, whereas a different pattern may apply to
device b and device c. This motivates two aspects of our approach.

The first is to be able to represent the information expressed in
each device configuration, separate from the syntax used to describe
this information. This intermediate representation was shown along-
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side each device configuration as the example device model. This is
shown in our toolchain as the Intermediate Device Model.

The second aspect of our approach is to formalise the transform
that generates these device models. This formalisation allows us to
share logic for common patterns, and to use specific logic where the
configuration of the device differs to other devices. This transform
step is shown in our toolchain as the Device Compiler.

This motivating example has also shown us that the interface nam-
ing can differ between target devices. This naming depends on the
specific configuration of the target device, and relates to the physical
inventory, as compared to the routing protocol configurations which
form the logical inventory. As we represent these routing protocols
and related network design information using Network Views in the
Abstract Network Model, we introduce the Intermediate Hardware
Model, which represents the physical set up of a target device. This
Intermediate Hardware Model can be used by the Device Compiler,
along with the Abstract Network Model, to produce the Intermediate
Device Model. This allows the physical inventory and logical inven-
tory to be combined to produce the final set of information to be
configured on the target device. This intermediate hardware model
can be produced in the Platform Compiler which takes into account
the target platform on which the device is intended, including a
physical testbed network, or a simulation network.

We will present these artefacts and processes in the next section.
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6.3 artefacts and processes

In this section we describe the key artefacts that are manipulated in
the generation of Low-Level Configuration state at the processes that
use and manipulate these artefacts. The artefacts discussed in this
section are the Intermediate Hardware Model, the Intermediate De-
vice Model, and Templates. The processes discussed are the Platform
Compiler, the Device Compiler, and the Configuration Assembler.

6.3.1 Artefacts

In this section we provide further details of the artefacts produced
in the intermediate or final steps of the two phase configuration
generation process.

Intermediate Hardware Model

The Intermediate Hardware Model contains the physical character-
istics of the device that will be used to implement the configuration.
The Intermediate Hardware Model specifies the physical inventory of
the network. This contrasts with the Abstract Network Model which
contains the logical inventory of the network.

An example of a physical characteristic is the interface naming
allocations for a device, such as eth0 or FastEthernet0/2, which depend
on the hardware inventory of a device. The Intermediate Hardware
Model can also include information relating to out-of-band manage-
ment access to the device, such as the tap management interface in
the Netkit platform simulations. An example of an Intermediate
Hardware Model is shown in Figure 6.6 for Network Element 4 of
the Simplified Small Internet Example.

Intermediate Device Model

The Intermediate Device Model contains code for each device in a
format that is complaint with the abstract syntax tree and semantics
of the device. For every device in the network, there will be a block
of code that represents the network state for the device. This code is
called a Device Model.

Each device has an entry in the Intermediate Device Model which
combines all of the information from the Network Views, together
with hardware-specific information from the Intermediate Hardware
Model, that are required to configure that device. Despite the fact that
devices have different concrete syntax and semantics, at the Device
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Network Element 4
interfaces

a
role: physical
id: eth0

b
role: physical
id: eth1

lo0
role: loopback
id: lo:1

e
role: management
id: eth4

compiler: example
c
role: physical
id: eth2

d
role: physical
id: eth3

Figure 6.6: Example of Intermediate Hardware Model for Network Element
4 of Simplified Small Internet Example.

Model level we have a more generalised representation, which we
show here using JSON.

The Device Model is analogous to the Abstract Syntax Tree for a
specific target device. The aim of the Device Model is to capture the
semantics of the target device platform, to simplify the final template
assembly step. Conceptually, each Device Model could be repre-
sented in simple JSON format, as the entries consist of key-value
pairs organised into lists, such as a list of interfaces.

Due to the differences in the target device semantics, the informa-
tion format in the Intermediate Device Model is specific to the target
platform. This contrasts to traditional compiler construction theory
where the intermediate model is fully device independent. The In-
termediate Device Model for a Cisco IOS target device would differ
from that of a Juniper Junos device, for the same Network Element
in the Abstract Network Model. We show examples of Intermediate
Device Models alongside extracts from device configuration syntax
in We show a motivating example with the variations between the
device syntax of a number of common devices in Section 6.2.

Intermediate Platform Model

The Intermediate Platform Model is analogous to the Intermediate
Device Model, but contains the information required for the platform.
For a testbed this could include the operating systems to run on the
virtual network devices, and the virtual links to establish between
the virtual devices. For a physical hardware testbed, this may be
an inventory of the physical hardware to use, and a wiring diagram
of how the devices are to be connected. The Intermediate Platform
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Model is particularly useful in automating the experimentation pro-
cess by allowing the experiment setup and device configurations to be
generated by the same process. We use this to evaluate our approach
in Chapter 7 and Chapter 8.

Templates

Templates are used to translate the Device Models into concrete syn-
tax for a particular target device. We show an example with the de-
vice syntax variations for a number of common devices in Section 6.2.

6.3.2 Processes

In this section we discuss the processes which generate the artefacts
discussed in the previous section.

Platform Compiler

Compiler Stage

Platform 
Compiler

Abstract 
Network Model

Intermediate 
Hardware Model

Network 
Whiteboard

Device Compilers

Design 
Functions

Figure 6.7: Platform Compilation process

The Platform Compiler takes the physical device information from
the Network Whiteboard and generates the Intermediate Hardware
Model. This process is shown in Figure 6.7. We show an example in
Section 6.4.1.

Device Compiler

The Device Compiler merges information from the Intermediate Hard-
ware Model and the Abstract Network Model, as shown in Figure 6.8.
We show an example in Section 6.4.2. Conceptually, the Device Com-
piler vertically traverses the Network Views of the Abstract Network
Model shown in Figure 6.2.
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Compiler Stage

Device  
Compiler

Device 
Compiler

Device 
Compiler

Intermediate Device Model

Device 
Model

Device 
Model

Device 
Model

Device 
Model

Device 
Model

Abstract 
Network Model

Intermediate 
Hardware Model

Figure 6.8: Device Compilation process

Configuration Assembler

The Configuration Assembler converts the Device Model entries into
concrete Device Configurations. This is performed through the use
of templates. This assembly process is shown in Figure 6.9.

Template Library

Template Template Template

Configuration 
Assembler

Intermediate Device 
Model

Device Configurations

Device 
Config

Device 
Config

Device 
Config

Device 
Config

Device 
Config

Figure 6.9: Configuration Assembly process using templates

Platform Configuration

The Platform Compiler can also be used to produce the Intermediate
Platform Model in addition to the Intermediate Device Model. This
can then be rendered using a Platform Assembler, which uses a Plat-
form Template to generate the Platform Configuration. This process
is shown in Figure 6.10.
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Compiler Stage

Platform 
Compiler

Intermediate 
Platform Model

Network 
Whiteboard

Template Library

Platform 
Template

Platform 
Assembler

Platform Configurations

Platform 
Config

Figure 6.10: Platform Configuration generation and assembly

6.3.3 Conclusion

In this section we have introduced the major artefacts and processes
for the generation of low-level configuration state. In the next section
we provide an example of the variations representations in low-level
device configurations. We then give a step-by-step example for a
particular Network Element in the Simplified Small Internet Example.
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6.4 compilation for simplified small internet example

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Template
Assembler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

Design
Functions

We now present a walkthrough of the compilation process for a
specific Network Element in the Simplified Small Internet Example
from Chapter 4 and Chapter 5.

In Figure 6.11 we show a specific instance of the generic workflow
shown in Figure 6.3. As previously shown, this example has seven
network views and fourteen Network Elements. This results in four-
teen device configurations being generated. As all devices in this
example are routers, we can use the same router device compiler for
each Network Element.

Abstract Network Model

Physical Network 
View

Layer 2 Conn 
Network View

Layer 2 Network 
View

eBGP Network 
View

IP Address 
Network View

OSPF Network 
View

iBGP Network 
View

Network 
Whiteboard

Platform 
Compiler

Intermediate 
Hardware Model

Intermediate Device Model

Device Model 1

Device Model 2

Device Model 3

Device Model 4

Device Model 5

Device Model 6

Device Model 7

Device Model 8

Device Model 9

Device Model 10

Device Model 11

Device Model 12

Device Model 13

Device Model 14

Router Device 
Compiler

Figure 6.11: Workflow for compilation process from the Network White-
board and Abstract Network Model to the Intermediate Device
Model using the Platform and Device Compilers.
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6.4.1 Platform Compiler

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Template
Assembler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

In this section we describe how the Platform Compiler takes the
interface information from the Network Whiteboard into an Inter-
mediate Hardware Model. We will explain how the management
interfaces are allocated and named. An example of this workflow is
shown in Figure 6.12. We will walk through each component of the
Intermediate Hardware Model shown previously in Figure 6.6.

Network 
Whiteboard

Map NEI Add Management
NEI

Allocate NEI 
Names

Intermediate 
Hardware Model

Allocate Device
Compilers

Platform Compiler

Figure 6.12: Workflow for Intermediate Hardware Model.

Map Network Element Interfaces

The first step is to collate the interfaces in the Intermediate Hardware
Model. This is done by iterating over the physical Network Element
Interfaces in the Network Whiteboard. This is shown in Figure 6.13.

Network Element 4
interfaces

a
role: physical

b
role: physical

lo0
role: loopback

c
role: physical

d
role: physical

Figure 6.13: Example of Intermediate Hardware Model for Network Ele-
ment 4 of Simplified Small Internet Example showing mapping
of interfaces from the Network Whiteboard.
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Add Management Network Element Interfaces

The next step is to allocate out-of-band management interfaces. This
is particuarly useful in simulation or emulation environments, where
the environment requires the use of an interface for management
purposes. An example of this allocation is shown in Figure 6.14.

Network Element 4
interfaces

a
role: physical

b
role: physical

lo0
role: loopback

e
role: management

c
role: physical

d
role: physical

Figure 6.14: Example of Intermediate Hardware Model for Network Ele-
ment 4 of Simplified Small Internet Example showing addition
of management interfaces.

Network Element Interface Naming

The next step is to apply naming to the interface types. For example,
the data and management interfaces are allocated as eth0, eth1, eth2,
etc, and the loopback is allocated as lo:1. This is shown in Figure 6.15.

Network Element 4
interfaces

a
role: physical
id: eth0

b
role: physical
id: eth1

lo0
role: loopback
id: lo:1

e
role: management
id: eth4

c
role: physical
id: eth2

d
role: physical
id: eth3

Figure 6.15: Example of Intermediate Hardware Model for Network Ele-
ment 4 of Simplified Small Internet Example showing interface
name allocation.
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Specification of Device Compiler

The final step is to specify the appropriate Device Compiler for the
target device. This can take into account both the platform, and the
relevant Network Element Labels such as device_type or syntax. An
example is shown in Figure 6.16, where the example compiler has
been specified.

Network Element 4
interfaces

a
role: physical
id: eth0

b
role: physical
id: eth1

lo0
role: loopback
id: lo:1

e
role: management
id: eth4

compiler: example
c
role: physical
id: eth2

d
role: physical
id: eth3

Figure 6.16: Example of Intermediate Hardware Model for Network Ele-
ment 4 of Simplified Small Internet Example showing Device
Compiler specification

Conclusion

In this section we have shown the key steps involved in the Plat-
form Compiler process, including the Mapping of Network Element
Interfaces, addition of management interfaces, naming of interfaces,
and specification of the device compiler. This process can be used to
produce the example Intermediate Device Model shown in Figure 6.6.
In the next section we will show the device compilation process.
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6.4.2 Device Compiler

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

Device
Compiler

Template
Assembler

Intermediate
Device Model

We now show the steps involved in the Router Device Compiler,
which takes the Network Views and the Intermediate Hardware Model,
and generates the Intermediate Device Model. For this example we
show this for a specific Network Element, r4. An overview of this pro-
cess is shown in Figure 6.17. This Router Device Compiler will con-
struct the Intermediate Device Model for an idealised target device,
which is based on a simplified version of the Quagga configuration
syntax. We use this simplified Device model to explain the concepts,
and provide a more complete example of the device compilation
process, in Chapter 6 and Chapter 7.

Intermediate 
Hardware Model

Compile Device
Information

Compile
Interfaces

Compile
OSPF

Intermediate 
Device Model

Abstract Network 
Model

Compile
iBGP

Compile
eBGP

Device Compiler

Figure 6.17: Workflow for Intermediate Device Model construction

We first describe the general device information. We then discuss
the how interface information is generated for the Intermediate De-
vice Model. For each routing protocol we then describe the Interme-
diate Device Model is generated for each protocol.

Device Model Example

An example Intermediate Device Model for Network Element 4 of
the Simplified Small Internet Example is shown in Figure 6.19. This
Intermediate Device Model is highlighted in Figure 6.18.
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Intermediate Device Model

Device Model 1

Device Model 2

Device Model 3

Device Model 4

Device Model 5

Device Model 6

Device Model 7

Device Model 8

Device Model 9

Device Model 10

Device Model 11

Device Model 12

Device Model 13

Device Model 14

Figure 6.18: Set of all Intermediate Device Models with Device Model for
Network Element 4 highlighted.

Device Information

The device information captures information relating to the device in
general at the device-global level, rather than for specific protocols.
An example is shown in Listing 6.11, based on the information in the
Device Model which has been highlighted in Figure 6.20.

{
"asn": 20,
"hostname": "r4"

}

Listing 6.11: Example device global information

We also describe an example utility function for interface descrip-
tion shown in Algorithm 6.13. This is used in the other components
of the Device Compiler.

Algorithm 6.13 Pseudo-Code for Interface Description utility func-
tion

function interface_description(θi,πi, τi)
X← neigh_ne(θphy,πi, τi) . Neighbor NEs of NEI
names← name_Π(θi,πi)∀πi ∈ X . Name of each neighbor NE
return str_concat(names, ’,’) . Concatenate with comma

end function
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Device
asn 20
hostname r4

Figure 6.20: Subsection of Device Model of Network Element 4, showing
Device Information.

Interfaces

2

3 4

65

b

ba

b

a

b d

c

(a) Subsection of Physical Network View for
Network Element 4

2,B.1

3,B.2 4,B.3

6,D.15,C.1

O.1

O.2N.2

J.1

J.2

K.1 K.2

N.1

ON

K

J

(b) Subsection of IP Address Network View
for Network Element 4

Interface 
Configuration 
Block

interface a
id eth0
role physical
ip J.2
subnet J/24
desc to r2

interface b
id eth1
role physical
ip O.1
subnet O/24
desc to r6

interface c
id eth2
role physical
ip N.1
subnet N/24
desc to r5

interface d
id eth3
role physical
ip K.2
subnet K/24
desc to r3

interface lo0
id lo:1
role loopback
ip B.3
subnet B/32
desc loopback 

interface e
id eth4
role mgmt
ip Z.4
subnet Z/24
desc mgmt

(c) Interfaces subsection of Device Model of Network Element 4

Figure 6.21: Subsection of Physical Network View and Interfaces section of
Device Model for Network Element 4

The Interfaces Device Model section is constructed by iterating
over the neighbours of the Network Element in the Physical Network
View, and the Loopback Network Element Interface, and is shown in
Figure 6.21. The Interface identifier in the Device Model is mapped
from the Network Element Interface Identifier in the Physical Net-
work View. The Interface Role is mapped from the Network Element
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Interface Role, and can be used in the template logic in the Assembly
step of the compilation process. The IP label is mapped from the IP
Address Label on the Network Element Interface, Subnet from the
Subnet Label of the neighbour Pseudo Network Element in the IP
Address Network View, and the description label from the neighbour
Network Element name in the Physical Network View. This process
is shown in the pseudo-code example in Algorithm 6.14. An example
section of the Intermediate Device Model for the interface informa-
tion is shown in Listing 6.16.

[ {
"desc": "to r2",
"id": "a",
"ip": "J.2",
"role": "physical",
"subnet": "J"
}, {
"desc": "to r6",
"id": "b",
"ip": "O.1",
"role": "physical",
"subnet": "O"
}, {
"desc": "to r5",
"id": "c",
"ip": "N.1",
"role": "physical",
"subnet": "N"
}, {
"desc": "to r3",

"id": "d",
"ip": "K.2",
"role": "physical",
"subnet": "K"
}, {
"desc": "loopback",
"id": "lo0",
"ip": "B.3",
"role": "loopback",
"subnet": "B"
} ]

Listing 6.12: Example JSON format
for Interfaces
Component
of Intermediate Device
Model for Network
Element 4

Algorithm 6.14 Pseudo-Code for interfaces component of device
compiler

function interfaces(Θ, IHM,πi)
X← ∅
θphy = NV(Θ, physical) . Physical Network View
θip = NV(Θ, ip) . IP Network View
t← NEI(θphy,πi) . NEI for NE πi
for τi ∈ t do
xid ← λIHM(IHM,πi, τi, id) . id from Intermediate

Hardware Model
xrole ← ρT (θphy,πi, τi)
xip ← λT (θip,πi, τi, ip) . IP from IP NV
xsubnet ← λT (θip,πi, τi, subnet) . Subnet from IP NV
xdescr ← interface_description(θphy,πi, τi)
X∩ {(id, xid), (role, xrole), (ip, xip), (subnet, xsubnet), (desc, xdesc)}

end for
return X

end function
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OSPF

4
a:
area: 0
cost: 1
b:
c:
d:
area: 0
cost: 1

2

3 4

65

b

a

b d

(a) Subsection of OSPF Network View for
Network Element 4. The Labels for the
Network Element Interfaces of Network
Element 4 are shown in the rectangle.

OSPF
Configuration 
Block

network J/24
area 0
cost 1
desc to r3

network K/24
area 0
cost 1
desc to r2

(b) OSPF subsection of Device Model of Net-
work Element 4

Figure 6.22: Subsection of OSPF Network View and Device Model for
Network Element 4

The OSPF Device Model section is constructed by iterating over the
neighbours of the Network Element in the OSPF Network View, and
is shown in Figure 6.22.

The Network label in the Device Model is mapped from the Subnet
label of the Pseudo Network Element in the IP Address Network
View. It can be seen that the Network Label is the same value as
used in the Interfaces section of the Device Model. This demonstrates
the repetition which occurs in construction the Device Model. The
Area and Cost Labels in the Device Model are mapped from the
Area and Cost labels of the Network Element interfaces in the OSPF
Network View. A pseudo-code example of this process is shown in
Algorithm 6.15, with an example Intermediate Device Model extract
for OSPF shown in Listing F.15.

[
{
"area": 0,
"cost": 1,
"desc": "to r5",
"network": "J/24"
}, {
"area": 0,
"cost": 1,
"desc": "to r6",
"network": "K/24"
}
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6.4 compilation for simplified small internet example

]

Listing 6.13: Example JSON format for OSPF Component of Intermediate
Device Model for Network Element 4

Algorithm 6.15 Pseudo-Code for OSPF component of device compiler
function ospf(Θ,πi)
X← ∅
θospf = NV(Θ, ospf) . Physical Network View
θip = NV(Θ, ip) . IP Network View
t← NEI(θospf,πi) . NEI for NE πi
for τi ∈ t do
xnetwork ← λT (θip,πi, τi, ip) . Network from IP NV
xarea ← λT (θospf,πi, τi,area) . Area from OSPF NV
xcost ← λT (θospf,πi, τi, cost) . Cost from OSPF NV
xdescr ← interface_description(θospf,πi, τi)
X∩ {(network, xnetwork), (area, xarea), (cost, xcost), (desc, xdesc)}

end for
return X

end function

BGP

In this section we describe the configuration of the intermediate de-
vice model for the BGP routing protocol. As we have shown in pre-
vious chapters, the design approach used for creating the topologies
for the interior (iBGP) and exterior (eBGP) forms of the BGP routing
protocol. As such, we treated these separately, by using two different
Network Views. However, when configuring a router, these are often
configured together. The router itself will determine whether a peer-
ing session is iBGP, or eBGP, by looking at the autonomous system
number in the configuration of that session. In terms of configuration,
we therefore combine the two iBGP and eBGP Network Views into the
same part of the intermediate device model.

The way in which each device configures the sessions, in particular
how the autonomous system number can be represented, can differ
between devices. However the general approach, of mapping the
sessions from the Network View into a list of sessions applies to the
different target devices.

This is in contrast to a protocol such as OSPF, which can vary in
the configuration data location between different target devices. For
OSPF we need to use a different function depending on the target
device. However to avoid repetition, we create two functions for BGP,
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which map the session information from the Network View into a list
of sessions. This list of sessions can then be handled as appropriate
by the target device compiler.

iBGP

2

3 4

65

y

y

z z

(a) Subsection of iBGP Network View for
Network Element 4

iBGP
Configuration 
Block

neighbor B.1
asn 20
desc to r2

neighbor B.2
asn 20
desc to r3

(b) iBGP subsection of Device
Model of Network Element 4

Figure 6.23: Subsection of iBGP Network View and Device Model for Net-
work Element 4

The iBGP Device Model section is constructed by iterating over the
neighbours of the Network Element in the iBGP Network View, and
is shown in Figure 6.23. The IP Address Network View is used to
map the loopback IP address of the neighbour, and the ASN label to
map the ASN of the neighbour. In this case, the ASN of Network
Element 4 could be used, since by definition, iBGP connects Network
Elements which have the same ASN.

We note here that our use of Network Views is declarative, in the
sense that allows a Design Function to express the desired topology,
of a network design. This is decoupled from the actual low-level
implementation of how to realise such a network design. For instance,
the compiler simply creates a session for each Network Element con-
nection in the iBGP Network View, regardless of how this Network
Element Connection was created. The connection is created the same,
whether that topology was constructed as either a full mesh, as a
hierarchy with the roles explicitly set on the Network Whiteboard, as
a hierarchy with the roles automatically assigned using an algorithm,
or as a multiple level hierarchy.

In each of these cases, we create a peering session in the Interme-
diate Device Model according to the structure of the Network View.
This allows us freedom in how we create the Design Functions to
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create the Network Views, with the compiler decoupling the low-level
implementation from the design policy.

This process is shown in the pseudo-code example in Algorithm 6.16,
and an extract of the Intermediate Device Model shown in Listing 6.14.

[
{
"asn": 20,
"desc": "to r2",
"neighbor": "B.1"
}, {
"asn": 20,
"desc": "to r3",
"neighbor": "B.2"
}
]

Listing 6.14: Example JSON format for iBGP Component of Intermediate
Device Model for Network Element 4

Algorithm 6.16 Pseudo-Code for iBGP component of device compiler
function ibgp(Θ,πi)
X← ∅
θibgp = NV(Θ, ibgp) . iBGP Network View
θip = NV(Θ, ip) . IP Network View
E← E(θibgp,πi) . NEC for NE πi
for εi ∈ E do
πremote = nec_other_ne(θi, εj, x) . Far-end NE
xneighbor ← λΠ(θip,πremote, ip) . NE IP from IP NV
xasn ← λASN(Θ,πremote)
xdescr ← interface_description(θibgp,πi, τi)
X∩ {(neighbor, xneighbor), (asn, xasn), (desc, xdesc)}

end for
return X

end function

eBGP

The eBGP Device Model section is constructed by iterating over the
neighbours of the Network Element in the eBGP Network View, and
is shown in Figure 6.24. The IP Address Network View is used to
map the loopback IP address of the neighbour, and the ASN label to
map the ASN of the neighbour. This process is shown in the pseudo-
code example in Algorithm 6.17, with an extract of the eBGP section
of the Intermediate Device Model shown in Listing F.21. The Pseudo-
Code to generate the eBGP section of the Intermediate Device Model
is shown in Algorithm 6.17.
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(a) Subsection of eBGP Network View for
Network Element 4

Loopback
1: A
20: B
30: D
40: E
100: F
200: C
300: G

Infrastructure
1: 
20: I, J, K
30:
40:
100: R, S, T
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300: U, V, W

(b) IP Address Blocks allocated to each ASN

eBGP
Configuration 
Block

neighbor C.1
asn 200
desc to r5

neighbor D.1
asn 30
desc to r6

Networks
B/24
I/24
J/24
K/24

(c) eBGP subsection of Device
Model of Network Element of
the Simplified Small Internet
Example

Figure 6.24: Subsection of eBGP Network View and Device Model for
Network Element 4

{
"neighbors": [
{
"asn": 200,
"desc": "to r5",
"neighbor": "C.1"
}, {
"asn": 30,
"desc": "to r6",
"neighbor": "D.1"
}
],
"networks": [

"B/24",
"J/24",
"K/24",
"L/24"
]
}

Listing 6.15: Example JSON format
for eBGP Component
of Intermediate Device
Model for Network
Element 4
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Algorithm 6.17 Pseudo-Code for eBGP component of device compiler
function ebgp(Θ,πi)
X← ∅
θebgp = NV(Θ, ebgp) . ebgp Network View
θip = NV(Θ, ip) . IP Network View
E← NEC(θebgp,πi) . NEC for NE πi
for εi ∈ E do
πremote = nec_other_ne(θi, εj, x) . Far-end NE
xneighbor ← λΠ(θip,πremote, ip) . NE IP from IP NV
xasn ← λASN(Θ,πremote)
xdescr ← interface_description(θebgp,πi, τi)
X∩ {(neighbor, xneighbor), (asn, xasn), (desc, xdesc)}

end for
Y ← ∅
ASN = λASN(Θ,πi)
loopbacks← λΘ(θip, loopback) . Loopback IP block label

from IP NV
infra← λΘ(θip, loopback) . Infrastructure IP block label from

IP NV
loopbacks_asn← get_key_val(loopbacks,ASN) . Loopback

IPs for this ASN
infra_asn← get_key_val(loopbacks,ASN) . Infra IPs for this

ASN
Y ← Y∩ loopbacks_asn . Add Loopback pool
Y ← Y∩ infra_asn . Add Infrastructure IP pool
return X

end function

Combining

As they are independent, each of these sub-compilers can be com-
bined to produce a single device compiler for the target device.

6.4.3 Conclusion

In this section we have provided an example of how information from
Network Views and the Network Whiteboard has led to the genera-
tion of the Intermediate Device Model artefact. In the next section we
will explain Phase Two of the Low-Level Device Configuration state,
describing rendering using templates.
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6.5 configuration assembly using templates

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Template
Assembler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

Template
Assembler Device Configs

Assembling the configurations through template rendering is straight-
forward in our toolchain, due to the Platform Compiler and Device
Compiler approach to handling the compilation logic. It follows
closely the guidelines for simple templates explained in earlier chap-
ters.

Listing 6.16 provides the interfaces part of the Intermediate Device
Model for the device r4 of the Simplified Small Internet Example.
Listing Listing 6.17 shows a simplified example template for a Cisco
IOS-like device syntax. The rendered template output is shown in
Listing 6.18 using the provided Intermediate Data Model.

The remaining template processing steps are shown in the appendix
as per Table 6.2. We combine these to form the combined Inter-
mediate Device Model shown in Listing 6.19, a combined template
in Listing 6.20 , and the resulting combined output configuration in
Listing 6.21.
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[ {
"desc": "to r2",
"id": "a",
"ip": "J.2",
"role": "physical",
"subnet": "J"
}, {
"desc": "to r6",
"id": "b",
"ip": "O.1",
"role": "physical",
"subnet": "O"
}, {
"desc": "to r5",
"id": "c",
"ip": "N.1",
"role": "physical",
"subnet": "N"
}, {
"desc": "to r3",
"id": "d",
"ip": "K.2",
"role": "physical",
"subnet": "K"
}, {
"desc": "loopback",
"id": "lo0",
"ip": "B.3",
"role": "loopback",
"subnet": "B"
} ]

Listing 6.16: Interfaces
JSON

{% for e in data %}
interface {{e.id}}
description {{e.desc}}
ip address {{e.ip}}

{% endfor %}

Listing 6.17: Interfaces Template

interface a
description to r2
ip address J.2

interface b
description to r6
ip address O.1

interface c
description to r5
ip address N.1

interface d
description to r3
ip address K.2

interface lo0
description loopback
ip address B.3

Listing 6.18: Interfaces Output

Table 6.2: IDM, Template, and output for OSPF, iBGP and eBGP

Protocol IDM Template Rendered Output

OSPF Listing F.15 Listing F.16 Listing F.17

iBGP Listing F.18 Listing F.19 Listing F.20

eBGP Listing F.21 Listing F.22 Listing F.23
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{
"asn": 20,
"ebgp": {
"neighbors": [{
"asn": 200,
"desc": "to r5",
"neighbor": "C.1"

}, {
"asn": 30,
"desc": "to r6",
"neighbor": "D.1"

}],
"networks": [
"B/24",
"J/24",
"K/24",
"L/24"

]
},
"hostname": "r4",
"ibgp": {
"neighbors": [{
"asn": 20,
"desc": "to r2",
"neighbor": "B.1"

}, {
"asn": 20,
"desc": "to r3",
"neighbor": "B.2"

}]
},
"interfaces:": [{
"desc": "to r2",
"id": "a",
"ip": "J.2",
"role": "physical",
"subnet": "J"

}, {
"desc": "to r6",
"id": "b",
"ip": "O.1",
"role": "physical",
"subnet": "O"

}, {
"desc": "to r5",
"id": "c",
"ip": "N.1",
"role": "physical",
"subnet": "N"

}, {
"desc": "to r3",
"id": "d",
"ip": "K.2",
"role": "physical",
"subnet": "K"

}, {
"desc": "loopback",
"id": "lo0",
"ip": "B.3",
"role": "loopback",
"subnet": "B"

}]
}

Listing 6.19: Combined Intermediate
Device Model

!
hostname {{data.hostname}}
!
{% for e in data.interfaces %}
interface {{e.id}}
description {{e.desc}}
ip address {{e.ip}}

{% endfor %}
!
router ospf
{% for e in data %}
network {{e.network}} area {{e.

area}}
{% endfor %}

!
router bgp {{data.asn}}
! ibgp
{% for e in data.ibgp.neighbors %}
neighbor {{e.neighbor}} remote-as

{{e.asn}}
{% endfor %}
! ebgp
{% for e in data.ebgp.neighbors %}
neighbor {{e.neighbor}} remote-

as {{e.asn}}
{% endfor %}
! networks
{% for e in data.ebgp.networks %}
network {{e}}
{% endfor %}

Listing 6.20: Combined Jinja2

Template

!
hostname r4
!
interface a
description to r2
ip address J.2

interface b
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description to r6
ip address O.1

interface c
description to r5
ip address N.1

interface d
description to r3
ip address K.2

interface lo0
description loopback
ip address B.3

!
router ospf
network J/24 area 0
network K/24 area 0

!
router bgp 20
! ibgp
neighbor B.1 remote-as 20
neighbor B.2 remote-as 20
! ebgp
neighbor C.1 remote-as 200
neighbor D.1 remote-as 30
! networks
network B/24
network J/24
network K/24
network L/24

Listing 6.21: Combined example device configuration

6.6 transfer function approach

In this section we provide an overview of how the Platform Compiler
and Device Compiler approach described in this Chapter to produce
the Intermediate Device Model can be viewed as a transfer function
applied to the Abstract Network Model and Network Whiteboard.
This follows a similar discussion we presented in Section 5.8.

We denote the Intermediate Hardware Model is represented as M
with each entry µi for device i. We then denote the Intermediate De-
vice Model as Ψ, and each individual device entry as ψi for Network
Element πi. For convenience, we denote each component entry in ψi
by σ, e.g σphy σospf, etc. Therefore, for Network Element πi, the
Intermediate Device Model entry ψi is defined as:

gdevice(θphy) = σdevice

ginterfaces(θphy, θip,µi) = σinterfaces

gospf(θospfl, θip) = σospf

gibgp(θibgp, θip) = σibgp

gebgp(θphy, θphy) = σebgp

(6.1)

For each function g we define a modified version g ′ which takes
the complete Abstract Network Model Θ rather than an individual
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Network View θi. This can be performed by a selection function to
obtain θi from Θ,

g ′
device(Θ) = σdevice

g ′
interfaces(Θ,µi) = σinterfaces

g ′
ospf(Θ) = σospf

g ′
ibgp(Θ) = σibgp

g ′
ebgp(Θ) = σebgp

(6.2)

Now µi is defined as h(ωi) for Network Whiteboard ωi, and h the
Platform Compiler function. The Intermediate Device Model for πi
is:

g ′
device(Θ) = σdevice

g ′
interfaces(Θ,h(ωi)) = σinterfaces

g ′
ospf(Θ) = σospf

g ′
ibgp(Θ) = σibgp

g ′
ebgp(Θ) = σebgp

(6.3)

Now recall that Θ = F(ωi), therefore

ψi = (σdevice,σinterfaces,σospf,σibgp,σebgp)

= (g ′
device(Θ),g

′
interfaces(Θ,µi),

g ′
ospf(Θ),g

′
ibgp(Θ),g

′
ebgp(Θ))

= G(F(ωi),h(ωi)) = G ′(ωi)

(6.4)

We can apply this for each Network Element πi to form the com-
plete Intermediate Device Model Ψ = (ψi,ψj,ψk, . . .). We can see
that our functional approach allows the Intermediate Device Model
Ψ to be constructed from the Network Whiteboard ωi.

This allows us to attain the property F(model) = configuration

described in industry presentations such as by Shields et al. [39].

6.7 conclusion

In this chapter we have shown how a combination of a device-level
intermediate representation and a template-based code generator can
be used to transform the network-level Network Views into low-level
device configurations. This approach is flexible to accommodate new
Network Views and additional compilation target devices.

In this chapter we have shown how the Platform Compiler and De-
vice Compiler approach addresses Research Question 4: How can the
configurations for a diversity of network devices be generated systematically
from a graph-based intermediate representation?
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In Chapter 4, Chapter 5, and Chapter 6 we explained the the-
ory supporting the generation of network device configurations from
high-level policy descriptions. In this chapter we present AutoNetkit,
an implementation of a tool that supports the toolchain and theoret-
ical framework previously discussed. This includes a description of
our experimental infrastructure for verifying the correctness of the
tool. The key contribution of this chapter is to describe the system
and tool implementation that demonstrates the practicality of the
theoretical approach. AutoNetkit is written in Python and available
on GitHub1, where it has over 80 “stargazers”2 (favourites). It has
been used in research demonstrations and by industry as part of the
VIRL [79] network simulation platform from Cisco.

We now present an overview of AutoNetkit and demonstrate its
use to implement our approach and toolchain. We will validate the
configurations generated on the Netkit simulation platform. This sets
up the experimentation framework to allow us to address Research
Question 5: What are the scalability and extensibility characteristics for
the compilation of High-Level Network Configuration Policy to device con-

1 https://github.com/sk2/autonetkit
2 https://github.com/sk2/autonetkit/stargazers
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figurations in terms of network size and diversity of network protocols and
target devices?, which we will address in the case studies of Chapter 8.

7.2 system implementation

7.2.1 Introduction

The architecture of the AutoNetkit implementation is shown in Fig-
ure 7.1. AutoNetkit is written in Python. There are two use-case
scenarios for the system. The first is as a black-box, where a Net-
work Whiteboard is provided to a tool which then produces low-level
device configurations, and a series of visualisations of the protocol
topologies. The device configurations can then be fed directly to
an emulated network environment. A collection framework can be
used to gather operational data from the emulated data to enable to
be compared to the requirements provided in the original network
description.

Collection

Visualisation

Configuration

Emulated Network

Visualisation Server

Browser Client

Design

Network Model

Compilation

Device Model
Processing

Validation

Deployment
Collection

Config Rendering

Figure 7.1: System Implementation and Experiment Setup

The second use-case allows for API use of the library. This is the
focus of this chapter, as this walks through the steps involved. An
understanding of this use-case makes the black-box use-case straight-
forward.

We now provide an overview of the architecture. A more detailed
description of the Python implementation was provided at the PyCon
Australia 2013 Conference [52]. A recording is available on YouTube3.

3 https://www.youtube.com/watch?v=EGK5jjyUBCQ
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7.2.2 Configuration

The Network Whiteboard can be provided in a number of formats.
It can be programmatically described, or imported using a graph
description format such as GraphML. We provide an example of this
in the example in this chapter, and an example of using GraphML in
the case studies in Chapter 8.

The Network Model is based on the NetworkX [93] Python graph
library. We provide an API on top of NetworkX to simplify the access-
ing of nodes, edges and interfaces, and the setting and getting of at-
tributes. This Abstract Network Model can be seen in the AutoNetkit
code on GitHub4. The Design Functions can be written using this
Network Model, which we provide examples of in this chapter. The
Platform and Device Compilers described in Chapter 6 are written
using an object-oriented approach allowing for extensibility. The
templates are written in the Jinja2 template format, which are then
rendered using the output of the Platform and Device Compilers.

Some of the terminology used in the implementation can differ
from that described in the theoretical chapters. A mapping of the
major terms is shown in Table 7.1. For simplicity of access, we in-
clude the Network Whiteboard as the input overlay in the Abstract
Network Model. This simplifies accessing elements and labels from
the Network Whiteboard in the Design Functions to construct the
other Network Views.

Table 7.1: Mapping of theory to implementation terms

Theory Implementation

Network Whiteboard input Overlay

Network View Overlay

Network Element Node

Network Element Connection Edge

Network Element Interface Interface

Label Attribute

Intermediate Device Model (IDM) Network Information Database
(NIDB)

4 https://github.com/sk2/autonetkit/tree/thesis16/autonetkit/anm
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Black-Box Console Script

A console script is also provided which allows the use of the use of
the system as a black-box. An example of such usage is provided
in Listing 7.1. This black-box approach can be constructed using the
workflow components, such as the Design Functions and Compilers
which we discuss in the Simplified Example later in this chapter.

$ autonetkit -f house.graphml
INFO AutoNetkit 0.11.0
INFO Automatically assigning input interfaces
INFO Allocating from IPv4 infrastructure block: 10.0.0.0/8
INFO Allocating from IPv4 loopback block: 192.168.0.0/22
INFO Compiling Netkit for localhost
INFO Configuration engine completed

$ tree --charset unicode -L 1 rendered/localhost/netkit
rendered/localhost/netkit
|-- 1
|-- 1.startup
|-- 2
|-- 2.startup
|-- 3
|-- 3.startup
|-- 4
|-- 4.startup
|-- 5
|-- 5.startup
‘-- lab.conf

Listing 7.1: Running AutoNetkit as a console script, with output directory
structure shown

7.2.3 Visualisation

Abstract Network 
Model

JSON ANM Tornado 
Webserver

d3.js Rendering 
Engine

Convert 
to JSON

Send over 
Websocket

HTTP 
POST

Figure 7.2: Flowchart of visualisation process

The visualisation process is shown in Figure 7.2. The Abstract
Network Model is converted to a JSON representation of the Ab-
stract Network Model, which is then sent to a Tornado webserver.
A browser-based Javascript library interprets the JSON from the web-
server and renders it using the d3.js [11] framework. The system
also allows highlighting of specific nodes, edges and paths. This can
be used to display data collected from running network simulations
such as traceroutes.

A screenshot is shown in Figure 7.3. The first dropdown menu
selects the overlay such as physical or ospf ; the second selects the
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node attribute to display, the third selects the link attribute, and
the fourth the interface attribute. The node icon is selected based
on the device_type node attribute. A grouping is displayed behind
the nodes: the physical overlay the nodes are grouped by their asn
attribute, and on the ospf overlay they are grouped by both their
asn and area attributes. The first checkbox allows the toggle of the
interface display, and the second animates transitions. The topology
diagrams used in Section 7.4 and Chapter 8 were generated using this
framework. As the visualisation framework generates SVG graphics,
plots can exported to PDF using a web browser.

r4

r5

r1 r2

r3

0
r4 to r5

r5 to r4

r4 to r2

r2 to r4

r4 to r3r3 to r4

r5 to r2

r2 to r5

r1 to r2 r2 to r1

r1 to r3

r3 to r1

ANK ď |  |   |    

Figure 7.3: Screenshot of visualisation system.

The visualisation system can also be used independently. Edel-
man [27] demonstrated how the system can be integrated with the
Schprokits network automation framework.

7.2.4 Collection

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Template
Assembler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

Run on
Testbed Results Analyse ResultsCollect

Results
Collect
Results

The collection components provides a wrapper to log into the indi-
vidual network device, and run diagnostic commands such as routing
tables or traceroute commands. This then can be processed using a
library such as TextFSM [40], which can then be compared to the
original configuration models in the Abstract Network Model, or
visualised using the visualisation framework.
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An example of such a visualisation was shown at a demonstration
at SIGCOMM 2014 [54] for data collection, and in the frames from
the time-series visualisation animation shown in Figure 7.4. The
collection approach was briefly described in Knight et al. [57]. This
approach has been expanded further as part of the Live Visualisation
feature of the Virtual Internet Routing Lab [79] platform from Cisco,
which uses the AutoNetkit Abstract Network Models and automated
visualisation framework.
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(a) OSPF Convergence: Sample A
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(c) OSPF Convergence: Sample C
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(d) OSPF Convergence: Sample D

Figure 7.4: Visualisation of collected OSPF data over a time-series as the
network converges. Captures are taken from the time-series
animation at https://www.youtube.com/watch?v=SOZog3n8d5s.

7.2.5 Emulated Network

The emulated network is a series of virtual machines that emulate the
network operating system of a device such as router. These run the
configurations generated by the Device Compilers in the system. The
emulated network also requires a description of the virtual machine
to instantiate and the wiring between these machines. These can be
generated by the Platform Compiler.
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7.2 system implementation

7.2.6 Availability and Installation

The system is available on GitHub5, and can be installed from the
Python Package Index6. The visualisation framework is also available
on GitHub7.

The version of AutoNetkit used in the following examples and case
studies is available on GitHub in the thesis16

8 branch. This can be
installed using the command shown in Listing 7.2.

pip install https://github.com/sk2/autonetkit/archive/thesis16.zip

Listing 7.2: Installation of thesis16 branch using the pip package manager

5 https://github.com/sk2/autonetkit
6 https://pypi.python.org/pypi/autonetkit
7 https://github.com/sk2/autonetkit_vis
8 https://github.com/sk2/autonetkit/tree/thesis16
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7.3 experimentation setup
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In Section 7.4 we describe generating configurations for the Netkit [84]
platform. In the Case Studies shown in Chapter 8 we generate Netkit
configurations, and also demonstrate generating configurations for
the Cisco VIRL [79], and the C-BGP [88] simulation platforms. This
allows us to demonstrate the use of the system across a variety of dif-
ferent target platforms and devices, showing the flexibility of the low-
level compilation approach discussed in Chapter 6. For verification
we will show the output of diagnostic commands such as traceroute

or the output of routing tables.
We now look at an example of an emulation setup for the House

topology example using Netkit. The topology is shown in Figure 7.5,
and consists of five routers and six links. All of the links are point-to-
point between the router pairs: we do not have any hubs or switches
in this topology. The interface names are specified as interface labels
and range from eth0 to eth3. We wish to reproduce this topology
in Netkit using the Quagga router software package. This requires
launching the appropriate virtual machines to represent the network
devices, running Quagga on them so they act as routers, and estab-
lishing the virtual links between these devices. We also provide an
out-of-band management network to be able to log into the devices
and run diagnostic commands for our verification process.

The Netkit emulation to run this topology is shown in Figure 7.6.
This is based on Figure 3 from [84], and has been adapted for the
House topology shown in Figure 7.5. It shows the virtual machines
representing the routers running Quagga routing software, which
provides the zebrad, ospfd, and bgpd processes. These lightweight vir-
tual machines run in User-Mode Linux. Virtual Network Interfaces,
listed as VNI represent the interfaces between the virtual machines,
and are connected by virtual hubs. The Quagga processes exchange
routing information over these Virtual Network Interfaces and virtual
hubs, with the resulting routes added to the Linux route table run-
ning in the Linux Kernel. Finally, we can use the “Tap” virtual hub to
interface to the host system, allowing out-of-band access to the virtual
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Figure 7.5: House example Physical Topology.

machines. The virtual machines, Virtual Network Interfaces, and
virtual hubs are specified by the Platform Compiler to generate the
Netkit lab.conf topology specification file, and the Device Compilers
generate configuration files for the Quagga processes.

In the next section we will walk through the process of generating
and verifying configuration files for the Netkit network emulation
platform. In Chapter 8 we will also generate configurations for the
VIRL network emulation platform. This follows the same general
concept of virtual machines running network operating systems, with
virtual links established between them.
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Figure 7.6: Overview of using Netkit emulation system as a testbed to
validate the House example topology. Netkit emulation diagram
based on Figure 3 from Pizzonia et al. [84]
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7.4 simplified example : house topology

In this example, we present a simplified walk-through of the key
components of the configuration process. This allows us to introduce
the components, so that we can focus on their extension in the case
studies of Chapter 8.

This uses the House topology we introduced in Section 4.3 with
two autonomous systems of routers, and the links between them. We
show the OSPF routing protocol within an autonomous system, and
the eBGP protocol between autonomous systems. We also configure
the iBGP protocol within the four-router autonomous system to share
the routes learnt by eBGP.

7.4.1 Methodology

The methodology used to implement and verify this example is shown
in Figure 7.7. This introduces the details of the toolchain and the
methodology which we use in Chapter 8. The configuration process
is shown on the left. The Network Whiteboard is transformed into the
Network Views of the Abstract Network Model using Design Func-
tions. These Design Functions follow the theoretical approach out-
lined in Section 5.6.The ordering is for the Physical Design Function
to transform the network whiteboard into the Physical Network View,
which is then used by the Layer 2 Design Function to create the Layer
2 Network View. This is then used by the IP Address Design Function,
and the Layer 2 Connectivity Design Function which creates the Layer
2 Connectivity Network View. The layer Two Connectivity Network
View is then used by each of the routing protocol Design Functions
for OSPF, iBGP, and eBGP. This Abstract Network Model can also
be sent to the Visualisation Server to be viewed in a browser-based
Visualisation Client. We use the Visualisation Client to automatically
generate the figures presented in this example.

The Platform Compiler compiles the Network Whiteboard into the
Intermediate Platform Model, and the Intermediate Hardware Model.
The Intermediate Platform Model is used to specify the simulation
details required by the Netkit lab.conf specification. The intermediate
hardware model assigns interface names and the Device Compiler to
use for each device. In this example the compiler used is the Quagga
Device Compiler. This device compiler combines the physical inven-
tory in the intermediate hardware model with the logical inventory
described in the abstract network model, to produce the Intermediate
Device Model. This Intermediate Device Model is then assembled
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by the Template Assembler with Quagga Templates to produce the
Quagga device configurations. The Intermediate Platform Model is
assembled with a Netkit Template to produce the Netkit Platform
Configurations.

These configurations can then be launched on a Netkit Simulation,
providing us with a running network using the high-level topology
specified on the Network Whiteboard. We then use a series of collec-
tion commands to allow us to gather data about the functioning of the
simulated network. Here we use the traceroute, show ip bgp, and
show ip route commands to view the path taken through a network,
and the diagnostic information about the functioning of the routing
protocols. We discuss the output of these collection commands to
confirm that the network has been correctly configured as intended
on the Network Whiteboard description.

Configuration
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Figure 7.7: Configuration Generation and Verification methodology for
House Example
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7.4.2 Network Whiteboard
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As the Network Whiteboard is represented by the input overlay in
the Abstract Network Model, the first step is to create the Abstract
Network Model object. This is shown in Listing 7.3 and Listing 7.4.

# Create Abstract Network Model
import autonetkit
anm = autonetkit.NetworkModel()

Listing 7.3: Initialisation

# Create Network Whiteboard
g_in = anm.add_overlay("input")

# Specify list of nodes to add
nodes = ["r1", "r2", "r3", "r4", "r5"]
# Add nodes to Network Whiteboard
g_in.add_nodes_from(nodes)
# Set device_type and asn for all nodes
g_in.update(device_type=" router", asn=1)
# Set asn for specific device r5
g_in.update("r5", asn=2)

# Update node positions from dictionary
positions = {

"r1": (0, 0),
"r2": (250, 0),
"r3": (0, 250),
"r4": (250, 250),
"r5": (500, 125)}

for n in g_in:
n.x, n.y = positions[n]

# Update visualisation
autonetkit.update_http(anm)

Listing 7.4: Create Network Whiteboard

Once we have the Abstract Network Model, we can add the input
overlay. We then define a list of five nodes, r1, r2, r3, r4, and r5, and
add these to the input overlay, using the add_nodes_from function.
Next, we use the update function to set attributes to the nodes in the
input overlay. We set the device_type to router, and the asn to 1. We
then specify the asn of the node r5 to be 2, placing it in a separate
Autonomous System for our design functions. Finally, we define a
dictionary of x and y co-ordinates for the nodes, and then iterate over
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the nodes in the input overlay, setting the appropriate attribute for
that node. The code for these steps is shown in Listing 7.4, and a
visualisation of the resulting overlay is shown in Figure 7.8.

r4

r5

r1 r2

r3

Figure 7.8: Visualisation of adding nodes step for Network Whiteboard

r4

r5

r1 r2

r3

Figure 7.9: Visualisation of Network Whiteboard with links added

Now that the nodes have been added, the next step is to add the
edges, representing the links. We first create a list of the (node1, node2)
pairs for the edges, and then use the add_edges_from function. We
then use the allocate_input_interfaces function, to automatically
allocate interfaces to the endpoint of each of the edges in the input
overlay. These steps are shown in Listing 7.6. This completes the
steps to create the Network Whiteboard. This has demonstrated
programmatic creation of the Network Whiteboard. In Chapter 8 we
explore methods that use specification file formats such as GraphML
to specify the Network Whiteboard. We then update the visualisation
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as shown in Listing 7.5, to give the visualisation of the completed
input overlay shown in Figure 7.9.

autonetkit.update_http(anm)

Listing 7.5: Update Visualisation

# Specify list of edges
edges = [("r1", "r2"), ("r2", "r4"), ("r1", "r3"),

("r3", "r4"), ("r2", "r5"), ("r4", "r5")]
# Add all edges from list to g_in
g_in.add_edges_from(edges)
# Automatically allocate interfaces to added edges
g_in.allocate_input_interfaces()

Listing 7.6: Set Edges in Network Whiteboard

7.4.3 Design Functions
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Intermediate
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In this section we show how the Design Functions described in
Section 5.6 are implemented in AutoNetkit. This illustrates how the
theoretical framework can be used in our reference implementation.

Physical

Abstract Network Model

Layer 2 Conn. 
Network View

IP Address 
Network View

OSPF
Network View

iBGP
Network View

eBGP
Network View

Layer 2
Network View

Physical 
Network View

The physical Design Function is responsible for creating the physical
overlay in the Abstract Network Model, corresponding to the physical
topology. This is used by the subsequent Design Functions discussed
in this section.

Here we make the simplifying assumption that all links in the
Network Whiteboard are physical. We could generalise this, by ex-
plicitly setting a default parameter of physical links in the Network
Whiteboard, and then selecting through a query the links from the
whiteboard which have the type of physical.
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As the physical overlay is fundamental to the network design pro-
cess, it is created automatically as part of the Abstract Network Model.
The first step in the physical Design Function is to add the appropriate
nodes from the input overlay, using the add_nodes_from function.
We use the retain parameter to copy the key attributes from the input
overlay, for the asn, device_type, and the x and y co-ordinates. These
are stored on the physical overlay, and used as the cross-view labels
discussed in Section D.1.4. A number of default attributes are then
set for nodes in the physical overlay, to simplify the other Design
Functions and the Compilers. These are to enable IPv4 by setting
the use_ipv4 boolean value to true, and then specifying the platform as
netkit and syntax as quagga for the Platform Compiler, and the host for
the grouping of nodes to the relevant simulation host.

The edges from the input overlay are added to the physical overlay
using the add_edges_from function. If required, these could be
filtered in this step, as discussed above for the case of different edge
types being specified in the Network Whiteboard step. The code
for the physical Design Function is shown in Listing 7.7. Finally, the
output is visualised, as shown in Figure 7.10.

# Access automatically created physical Network View
g_phy = anm[ ’phy’]
# Copy nodes from g_in and retain key attributes
g_phy.add_nodes_from(g_in, retain=["asn", "device_type", "x", "y"])
# Set default attributes
g_phy.update(use_ipv4=True, host=" localhost ",

platform=" netkit ", syntax="quagga")

# Add edges from g_in
g_phy.add_edges_from(g_in.edges())
autonetkit.update_http(anm)

Listing 7.7: Physical Design Function

Layer 2

The first step is to create the layer2 overlay in the Abstract Network
Model. We then add the nodes and edges from the physical overlay.

The next step is to split the point-to-point edges to form the col-
lision domains. This is performed by using the Python list compre-
hension on the edges in the layer2 overlay, and filtering to only list
the edges that connect layer 3 devices (routers in this case). This
is performed using the is_l3device function, which looks at the de-
vice_type attribute we set on the physical overlay. This demonstrates
the use of the pass-through attributes: the device_type attribute is
passed through to return the value set on the physical overlay. In this
case, as all edges connect routers, the list of edges to be split is the list

206



7.4 simplified example : house topology

r4

r5

r1 r2

r3

eth2

eth0

eth0

eth1

eth1eth1

eth1

eth2

eth0 eth0

eth1

eth0

Figure 7.10: Visualisation of Physical Network View. The interface labels
shown have been allocated in the later Platform Compiler stage.
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of all edges in the topology. For more advanced cases, as discussed
in Section 5.7.1, this filtering step becomes more important.

We then split these edges using the split function, which imple-
ments the split High-Level Primitive discussed in Figure 5.4.3. We
prepend the bd_ prefix to each of the pseudo-nodes created using
the split function. The suffix of the pseudo-node is formed using
the labels of the nodes at each end of the split. For example the
label bd_r3_r4 is generated for the pseudo-node created on the edge
between r3 and r4.

We also calculate the mean x and y value based on the nodes at
each end of the split, and allocate this to the newly created pseudo-
node. For IP allocation purposes, we allocate the most common asn
value to the pseudo-node, based on the nodes which were split. This
is used when allocating IP addresses for the inter-asn edges. Finally,
we mark the device_type as broadcast_domain and the broadcast_domain
attribute to be true, to assist in querying and filtering in subsequent
design functions.

The Layer 2 Network View is constructed using the Design Function
described in Listing 7.8, with the output of this Design Function is
shown in Figure 7.11.

from autonetkit.ank import split
from collections import Counter
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# Create Layer 2 Network View
g_l2 = anm.add_overlay(" layer2 ")
# Add nodes and edges from g_phy
g_l2.add_nodes_from(g_phy)
g_l2.add_edges_from(g_phy.edges())

# Split the point-to-point edges to add a collision domain
edges_to_split = [edge for edge in g_l2.edges()

if edge.src.is_l3device() and edge.dst.is_l3device()]

# Mark split edges with attribute
for edge in edges_to_split:

edge.split = True # mark as split for use in building nidb

# Split the edges with broadcast domain pseudo-node
split_created_nodes = split(g_l2, edges_to_split, id_prepend= ’bd_ ’)

for node in split_created_nodes:
# Set the x,y of split nodes based on neighbor average
neighs = node.neighbors()
x = sum(neigh["phy"].get("x") for neigh in neighs) / len(neighs)
y = sum(neigh["phy"].get("y") for neigh in neighs) / len(neighs)
node.set("x", x)
node.set("y", y)

# Set asn attribute of broadcast domain to be most frequent
c = Counter(n.get("asn") for n in neighs)
most_common_asn, _ = c.most_common(1)[0]
node.set("asn", most_common_asn)

# Set boolean and device_type attributes
node.set("broadcast_domain", True)
node.set("device_type", "broadcast_domain")

# Update visualisation
autonetkit.update_http(anm)

Listing 7.8: Layer 2 Design Function
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Figure 7.11: Visualisation of Layer 2 Network View
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The IP Addressing Design Function uses the simplified algorithm
outlined in Section 5.6.3. As discussed in Section 9.3.1 IP Addressing
is a complex topic, with many possible algorithms. We use a simpli-
fied algorithm in this example. The code for this Design Function is
shown in Listing G.3.

The first step in the IP Addressing Design Function is to create the
overlay. The nodes and edges are added from the Layer 2 overlay. We
also explicitly copy the broadcast_domain, device_type and asn attributes
from the Layer 2 overlay, for the broadcast_domain pseudo-nodes. This
is because these pseudo-nodes aren’t present in the physical overlay,
and so the pass-through attribute approach does not apply. Future
work can generalise the pass-through attribute approach for pseudo-
nodes in the implementation. The x and y co-ordinates are cached
as part of the visualisation process, so they do not need to be copied
across. The next step is to create the IP Address blocks to be allocated.
We use the netaddr [71] Python module for this. We first allocate the
loopback addresses to the routers. We use the 10.0.0.0/16 block for
loopback addresses, and allocate a /24 subnet to each AS. We group
the nodes based on their asn attribute allocated on the input overlay,
using the group_by function, which is based on the grouping High-
Level Primitive. This function gives a list of (asn, nodes) tuples, where
nodes is the list of nodes for the asn.

The next step is to iterate over each of these tuples, and get the next
asn_block from the subnet allocation. We record the address block
used for the asn into the loopback_allocations dictionary, for use in the
prefix announcement of the routing protocol Design Functions. We
then iterate over each node in the list of nodes for the asn, and allocate
the next free IP Address onto the node, and onto the loopback_zero
interface of the node. The result of this step is shown in Figure 7.12.

We then allocate the infrastructure IP addresses to the physical inter-
faces of the nodes. For this, we use the 192.168.0.0/16 address block.
Like for the loopback addresses, we break this into a /24 block for
each AS, which we refer to as the asn_block. We then filter the nodes in
the IP Addressing overlay, to obtain the list of broadcast_domain nodes.
We use the group_by function to group only these broadcast_domain
nodes by their asn attribute. For each asn we get the next IP address
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block, and record this into the infra_allocations dictionary, for adver-
tisement in the routing protocol Design Functions.

As this example contains only point-to-point subnets, we can sim-
ply divide the asn_block into /30 subnets. This simplifying assumption
can be relaxed for more complex topologies involving switches. We
then iterate over the grouped (asn, nodes) tuple of broadcast_domain
nodes. We obtain the next /30 prefix from the asn_block, and record
this onto the broadcast_domain node. We use the neighbor_interfaces

function for the broadcast_domain node to obtain the neighbor inter-
faces. This function is based on the nei_by_ne Low-Level Primitive
described in Figure D.2.4, and returns the physical interfaces of the
router nodes, connected to this broadcast_domain node. We then iterate
over the IP addresses of the /30 prefix for this broadcast_domain, and
allocate them to these physical interfaces. This gives the resulting
overlay shown in Figure 7.12.

b

b

b

b

b

b

10.0.0.4

10.0.1.1

10.0.0.1 10.0.0.2

10.0.0.3

Figure 7.12: Visualisation of IP Network View. Node labels show loopback
IP allocations.
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Figure 7.13: Visualisation of Layer 2 Connectivity Network View

The Layer 2 Connectivity Network View is used for the routing
Design Functions. It is an intermediate Network View. The code for the
Design Function is shown in Listing G.2. This code is shown in the
appendix. This Design Function first creates the Layer 2 Connectivity
overlay in the Abstract Network Model, and adds the nodes and
edges from the Layer 2 overlay. It then uses the node query function
to select the nodes which have the broadcast_domain attribute set to
true. This generalisation allows nodes such as switches to be also
allocated with the broadcast_domain attribute, to handle more complex
topologies without needing to modify the Layer 2 Connectivity Design
Function.

We then use the explode function, based on the [] explode High-
Level Primitive. This explodes out the links connected to the broadcast
domain nodes. In this simplified example, where we only have point-
to-point links between routers, this results in a Layer 2 Connectivity
overlay which has the same connectivity as the physical overlay. For
more complex topologies as discussed in Section 5.7.1 the Layer 2
Connectivity overlay would be different to the physical overlay. This
generalisation and use of an intermediate network view also decouples
the routing Design Functions from the physical topology. We demon-
strate the power of this approach in the case studies in Chapter 8.
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The result of the Layer 2 Connectivity Design Function is shown in
Figure 7.13.
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Figure 7.14: Visualisation of OSPF Network View. Interface labels show the
value of the area attribute.

The OSPF Network View is shown in Figure 7.14. As per the
Design Functions shown in Listing G.4, the OSPF Network View is
constructed from the routers and interfaces from the physical Network
View, and the edges from the Layer 2 Connectivity Network View,
where the edge connects two nodes in the same AS. These edges
represent OSPF adjacencies.

A default OSPF area attribute of 0 is set on each interface that is
connected in the OSPF Network View. A default OSPF area attribute
of 0 is also set on the Loopback Zero interface of each node in the
OSPF Network View.

Listing G.5 shows the process to map the prefixes to be advertised
by the OSPF routing process. For each node, these are the prefixes
allocated to each of the interfaces of the node, from the IP Addressing
Network View. These include the infrastructure and loopback zero IP
address prefixes.
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Figure 7.15: Visualisation of iBGP Network View. iBGP Session endpoints
have been annotated with the bound_to interface labels

The iBGP Network View is shown in Figure 7.15. The Design
Functions used to construct is it shown in Listing G.6. The Design
Function first adds the routers and interfaces from the Layer 2 Net-
work View. It then groups the nodes by their asn attribute. Within
each AS group of nodes, a full-mesh is constructed by connecting
each node to each other node in the AS group with an edge. These
edges represent iBGP sessions.

A logical interface is created to represent the BGP session endpoint,
and is connected by the edge. To establish the iBGP session between
loopback interfaces, the logical interface is associated to the Loopback
Zero interface. This association is shown on the interface labels in
Figure 7.15.
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Figure 7.16: Visualisation of eBGP Network View. eBGP Session endpoints
have been annotated with the bound_to interface attributes

The eBGP Network View is shown in Figure 7.16, with the associ-
ated Design Function shown in Listing G.7. The eBGP Design Func-
tion first adds the routers and interfaces from the Layer 2 Network
View. It then adds the edges from the Layer 2 Connectivity Network
View, where the edge connects routers that do not have the same asn
value. These edges represent eBGP sessions.

To construct these edges we first add a logical interface to the nodes
at each end of the edge. This logical interface is then associated to
the corresponding physical interface from the Layer 2 Connectivity
Network View. This establishes the eBGP session on the physical
interface.

The edge is then created with these logical interfaces as the eBGP
session termination points. This is shown in Figure 7.16, where the
interface attributes show the associated physical interface for the eBGP
session. The edge from r2 to r5 is from the Layer 2 Connectivity edge
between eth2 of r2 and eth0 of r5, and the edge from r4 to r5 is from
the Layer 2 Connectivity edge between eth2 of r4 and eth0 of r5.

Finally, the code shown in Listing G.8 is used to aggregate the ASN
prefixes to be advertised over eBGP.
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We now provide an overview of implementing the Platform Com-
piler and Device Compiler process in AutoNetkit.

Netkit Platform Compiler
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The Platform Compiler performs the roles discussed previously in
Section 6.3.2. The code for the Netkit Platform Compiler is shown in
Listing G.9, and we provide an overview of the code here.

The Netkit Platform Compiler is created as a Python Class, which
allows it to be extended in the future using inheritance, as discussed
in Chapter 6. The main compiler logic is performed in the compile

function. This function returns an nidb data structure, which is a
Python dictionary containing the information required for the tem-
plates. This is the Intermediate Hardware Model for each node, a list
of the subnets, and a list of the tap management interfaces.

As we did not allocate interface ids in the Network Whiteboard
step, we first iterate over each of the nodes in the topology, and run
the setup_interfaces command. This allocates the interface ids, such
as eth0, eth1, eth2, etc.

We then create the wiring information for the simulation to specify
which interfaces on the simulated devices get connected together.
Netkit connectivity is specified in the form of a 3-tuple of (node,
interface, collision_domain_alias). All (node, interface) tuples sharing
the same collision_domain_alias label will be connected to the same
collision domain. For simplicity in this example, we use the IP subnet
as the collision_domain_alias.

We then allocate the tap interfaces for the out-of-band management
access. This is performed by adding an additional interface to each
node, with the appropriate next free interface id.
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The result of all of these operations are stored in the nidb dictionary
as a lab. This allows expansion to generate multiple labs from a single
Network Whiteboard and Abstract Network Model. These multiple
labs could be launched on different hosts or on different simulation
environments, and interconnected.

An example of the lab output for this topology is shown in List-
ing 7.9.

{
"machines": ["r1", "r2", "r3", "r4", "r5"],
"subnets": [
{"host": "r1", "interface_id": "0", "subnet": "192.168.0.0.30"},
{"host": "r1", "interface_id": "1", "subnet": "192.168.0.4.30"},
{"host": "r2", "interface_id": "0", "subnet": "192.168.0.0.30"},
{"host": "r2", "interface_id": "1", "subnet": "192.168.0.8.30"},
{"host": "r2", "interface_id": "2", "subnet": "192.168.0.12.30"},
{"host": "r3", "interface_id": "0", "subnet": "192.168.0.4.30"},
{"host": "r3", "interface_id": "1", "subnet": "192.168.0.16.30"},
{"host": "r4", "interface_id": "0", "subnet": "192.168.0.8.30"},
{"host": "r4", "interface_id": "1", "subnet": "192.168.0.16.30"},
{"host": "r4", "interface_id": "2", "subnet": "192.168.0.20.30"},
{"host": "r5", "interface_id": "0", "subnet": "192.168.0.20.30"},
{"host": "r5", "interface_id": "1", "subnet": "192.168.0.12.30"}

],
"taps": {
"linux_host": "172.16.0.1",
"tap_hosts": [
{"interface_id": 2, "node": "r1", "tap_ip": "172.16.0.5"},
{"interface_id": 3, "node": "r2", "tap_ip": "172.16.0.6"},
{"interface_id": 2, "node": "r3", "tap_ip": "172.16.0.7"},
{"interface_id": 3, "node": "r4", "tap_ip": "172.16.0.3"},
{"interface_id": 2, "node": "r5", "tap_ip": "172.16.0.4"}

],
"tap_vm_ip": "172.16.0.2"

}
}

Listing 7.9: Lab output showing nidb information

The final step is to run the Device Compiler for each node, and to
store the result into the nidb. This is discussed in the next step.

The lab configuration for this Intermediate Platform Model is shown
in Listing 7.10. This configuration is rendered using the lab template
discussed later in this section.
machines = "r4, r5, r1, r2, r3"

r4[0]=192.168.0.8.30
r4[1]=192.168.0.16.30
r4[2]=192.168.0.20.30
r5[0]=192.168.0.20.30
r5[1]=192.168.0.12.30
r1[0]=192.168.0.0.30
r1[1]=192.168.0.4.30
r2[0]=192.168.0.0.30
r2[1]=192.168.0.8.30
r2[2]=192.168.0.12.30
r3[0]=192.168.0.4.30
r3[1]=192.168.0.16.30
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r4[3]=tap,172.16.0.1,172.16.0.3
r5[2]=tap,172.16.0.1,172.16.0.4
r1[2]=tap,172.16.0.1,172.16.0.5
r2[3]=tap,172.16.0.1,172.16.0.6
r3[2]=tap,172.16.0.1,172.16.0.7

Listing 7.10: Example Netkit lab configuration for House topology
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We now discuss the Device Compiler, which transforms the Ab-
stract Network Model into the Intermediate Device Model format
suitable to render the device configuration using templates. The code
for the Quagga Device Compiler is shown in Listing G.12, which we
provide a summary of here.

Our target is an individual configuration file for each of the Quagga
daemons (OSPF, BGP, etc). We note that a large part of the same
compiler logic could be used for a single-configuration file vtysh ap-
proach.

The compile function takes a node and returns a dictionary con-
taining each of the entries required for the templates. These entries
include the hostname and asn attributes of the node. Further, there are
data structures for each of zebra, ssh, interfaces, ospf and bgp. These
data structures are provided by further functions called by the com-
pile function. This dictionary returned is the Intermediate Hardware
Model for the specific device provided to the compile function.

The zebra function is used to specify the password for the Zebra
routing daemon process. The ssh function specifies whether SSH key
access is allowed to automate logins. For this example it is disabled.

The interfaces function iterates over each of the interfaces of the
nidb. This includes the interfaces from the Abstract Network Model,
including the loopback interface, and also those interfaces added by
the Platform Compiler, such as the tap out-of-band management in-
terfaces. This function is used for the ifconfig commands to configure
the interface in Linux within Netkit.

The ospf function iterates over each of the interfaces of the given
node, and appends the area and network subnet to the list of OSPF
networks for that node.
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Finally, the bgp function handles both iBGP and eBGP. For the
ibgp and ebgp overlays, the edges (corresponding to sessions) are
iterated over. The interface binding is looked up, and a dictionary
is created for each session. This dictionary contains the IP address of
the neighbour, the asn attribute of the neighbour, a short description
for the session, and the IP address to use for the update source BGP
configuration directive. For this example, the update source is set to the
interface of which the session is bound. For ibgp this is the loopback
interface, and for ebgp this is the physical interface. The ASN prefixes
to be advertised are included, and the Loopback IP address is used
for the router_id to use to uniquely identify the BGP speaker in the
network

To summarise, the return value of the bgp function is a dictio-
nary containing a list of the ibgp_neighbors dictionaries, a list of the
ebgp_neighbors dictionaries, the networks to announce, and the router_id.

An example of the Intermediate Device Model for node r4 is shown
in Listing 7.11.

{
"asn": 1,
"bgp": {
"ebgp_neighbors": [
{"asn": 2, "desc": "Router r5",
"neigh_ip": "192.168.0.22", "update_source": "192.168.0.21"}

],
"ibgp_neighbors": [
{"asn": 1, "desc": "Router r1",
"neigh_ip": "10.0.0.1", "update_source": "10.0.0.4"},

{"asn": 1, "desc": "Router r2",
"neigh_ip": "10.0.0.2", "update_source": "10.0.0.4"},

{"asn": 1, "desc": "Router r3",
"neigh_ip": "10.0.0.3", "update_source": "10.0.0.4"}

],
"networks": ["10.0.0.0/24", "192.168.0.0/24"],
"router_id": "10.0.0.4"

},
"hostname": "r4",
"interfaces": [
{"broadcast": "192.168.0.11", "id": "eth0",
"ip": "192.168.0.10", "netmask": "255.255.255.252"},
{"broadcast": "192.168.0.19", "id": "eth1",
"ip": "192.168.0.18", "netmask": "255.255.255.252"},
{"broadcast": "192.168.0.23", "id": "eth2",
"ip": "192.168.0.21", "netmask": "255.255.255.252"},
{"broadcast": "172.16.255.255", "id": "eth3",
"ip": "172.16.0.3", "netmask": "255.255.0.0"},
{"broadcast": null, "id": "lo:1", "ip": "10.0.0.4",
"netmask": "255.255.255.255"}

],
"ospf": {
"networks": [
{"area": 0, "network": "10.0.0.4/32"},
{"area": 0, "network": "192.168.0.8/30"},
{"area": 0, "network": "192.168.0.16/30"}

]
},
"ssh": {"use_key": false},
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"zebra": {"password": "zebra"}
}

Listing 7.11: Example Intermediate Device Model for node r4 of House
topology

The configurations for OSPF and BGP are shown in Listing 7.12

and Listing 7.13 respectively. These are rendered using the templates
discussed later in this section
!
hostname r4
password zebra
enable password zebra
!
!
router ospf

network 192.168.0.4/30 area 0
network 192.168.0.16/30 area 0

!
log file /var/log/zebra/ospfd.log
!

Listing 7.12: Example OSPF configuration for r4 of House topology

!
hostname r4
password zebra
enable password zebra
!
router bgp 1
network 172.16.0.0/24
network 192.168.0.0/24
! 172.16.0.2
neighbor 172.16.0.2 remote-as 1
neighbor 172.16.0.2 description Router r1
! 172.16.0.3
neighbor 172.16.0.3 remote-as 1
neighbor 172.16.0.3 description Router r2
! 172.16.0.4
neighbor 172.16.0.4 remote-as 1
neighbor 172.16.0.4 description Router r3
!
!
neighbor 192.168.0.2 remote-as 2
neighbor 192.168.0.2 description Router r5
!
!
log file /var/log/zebra/bgpd.log
!
debug bgp
debug bgp events
debug bgp filters
debug bgp fsm
debug bgp keepalives
debug bgp updates
!

Listing 7.13: Example BGP configuration for r4 of House topology
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Compilation Result

An example of running the created Platform Compiler is shown in
Listing 7.14.

# Create Platform Compiler and Compile
sim_plat = simple_platform_compiler(anm, nidb)
sim_plat.compile()

Listing 7.14: Compile Platform

7.4.5 Templates

The Netkit Lab.conf Template Listing G.22 is for the lab, specifying
the nodes to start, the links between them, and the TAP management
interfaces.

There are four templates for configuring the Quagga routing pro-
cesses. The Zebra Template Listing G.17 is for the base Zebra setup
for Quagga, such as setting login to the Zebra shell, and static routes.
The OSPF template Listing G.16 contains the OSPF configuration
information OSPF Template, and the BGP template Listing G.14 con-
tains the BGP (both iBGP and eBGP) configuration information. Fi-
nally, the Quagga Daemons Template Listing G.15 specifies the Zebra
routing processes to run, in this case Zebra, OSPF and BGP.

Each virtual machine has a Netkit Device Startup Template List-
ing G.19, which configures the Linux ethernet interfaces and IP ad-
dresses, and starts the SSH and Zebra processes. It also sets the
SSH password to allow SSH login. The Hostname Template List-
ing G.18 sets the hostname of the device, and the Shadow Template
Listing G.20 and SSH Config template Listing G.21 are used to setup
the SSH login process.

7.4.6 Template Assembly
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Once we have the templates, we can render the data into the tem-
plates, as shown in Listing G.23 and Listing G.24. For convenience, a
number of shortcuts into the NIDB dictionary are defined as shown
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in Listing G.10. This step implements the configuration assembly step
discussed in Chapter 6.

The rendered output is written into a gzip archive, which can be
copied to the Netkit server, extracted, and the lab launched. Writing
to a .tar.gz archive in memory, and then writing the final archive to
disk can significantly optimise performance by reducing disk I/O
operations. This is especially important for the large-scale case study
discussed in Section 8.6.

7.4.7 Example Output

An example of output of the process is shown below. The directory
file structure is shown in Listing 7.15. We also show example router
configs for the router r4. Listing 7.16 shows the ospfd.conf output,
and Listing 7.17 shows the bgpd.conf output.

|-- lab.conf
|-- r1
| -- etc
| |-- hostname
| |-- shadow
| |-- ssh
| | -- ssh_config
| -- zebra
| |-- bgpd.conf
| |-- daemons
| |-- ospfd.conf
| -- zebra.conf
|-- r1.startup
|-- r2
| -- etc
| |-- hostname
| |-- shadow
| |-- ssh
| | -- ssh_config
| -- zebra
| |-- bgpd.conf
| |-- daemons
| |-- ospfd.conf
| -- zebra.conf
|-- r2.startup
|-- r3
| -- etc
| |-- hostname
| |-- shadow
| |-- ssh
| | -- ssh_config
| -- zebra
| |-- bgpd.conf

| |-- daemons
| |-- ospfd.conf
| -- zebra.conf
|-- r3.startup
|-- r4
| -- etc
| |-- hostname
| |-- shadow
| |-- ssh
| | -- ssh_config
| -- zebra
| |-- bgpd.conf
| |-- daemons
| |-- ospfd.conf
| -- zebra.conf
|-- r4.startup
|-- r5
| -- etc
| |-- hostname
| |-- shadow
| |-- ssh
| | -- ssh_config
| -- zebra
| |-- bgpd.conf
| |-- daemons
| |-- ospfd.conf
| -- zebra.conf
-- r5.startup

20 directories, 41 files

Listing 7.15: Tree Output for Lab

!
hostname r4
password zebra
enable password zebra
!
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!
router ospf

network 192.168.0.4/30 area 0
network 192.168.0.16/30 area 0

!
log file /var/log/zebra/ospfd.log
!

Listing 7.16: Example ospfd.conf output for r4

!
hostname r4
password zebra
enable password zebra
!
router bgp 1
network 172.16.0.0/24
network 192.168.0.0/24
! 172.16.0.2
neighbor 172.16.0.2 remote-as 1
neighbor 172.16.0.2 description Router r1
! 172.16.0.3
neighbor 172.16.0.3 remote-as 1
neighbor 172.16.0.3 description Router r2
! 172.16.0.4
neighbor 172.16.0.4 remote-as 1
neighbor 172.16.0.4 description Router r3
!
!
neighbor 192.168.0.2 remote-as 2
neighbor 192.168.0.2 description Router r5
!
!
log file /var/log/zebra/bgpd.log
!
debug bgp
debug bgp events
debug bgp filters
debug bgp fsm
debug bgp keepalives
debug bgp updates
!

Listing 7.17: Example bgpd.conf output for r4

7.4.8 Launching
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The topology can be launched by transferring the .tar.gz lab gener-
ated by AutoNetkit across to the destination server. It can then be
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extracted and launched using the Netkit lstart command, as shown in
Listing 7.18.

ubuntu@ip-172-31-14-185:~/lab$ lstart -o --con0=none -p5

======================== Starting lab ===========================
Lab directory: /home/ubuntu/lab
Version: <unknown>
Author: <unknown>
Email: <unknown>
Web: <unknown>
Description:
<unknown>
=================================================================
You chose to use parallel startup.
Starting "r1"...
Starting "r2"...
Starting "r3"...
Starting "r5"...
Starting "r4"...

The lab has been started.
=================================================================

Listing 7.18: Launching Lab

7.4.9 Measuring
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The running simulation can be measured by logging into one of
the virtual routers using a command such as telnet or ssh, and then
running a diagnostic command. Listing 7.19 shows the output of
displaying the routing table, using show ip route for the node r4. We
can see the login process through telnet, and then the running of
the command. This can be automated using expect scripting, in the
collection framework discussed in Section 7.2.4.
ubuntu@ip-172-31-14-185:~/lab$ telnet 172.16.0.3 zebra
Trying 172.16.0.3...
Connected to 172.16.0.3.
Escape character is ’^] ’.
MOTD file not found

User Access Verification

Password:
r4> en
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Password:
r4# sh ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

I - ISIS, B - BGP, > - selected route, * - FIB route

C>* 127.0.0.0/8 is directly connected, lo
C>* 172.16.0.0/16 is directly connected, eth3
B>* 172.16.1.0/24 [20/0] via 192.168.0.2, eth2, 00:00:52
C>* 192.168.0.0/30 is directly connected, eth2
O 192.168.0.4/30 [110/10] is directly connected, eth0, 00:00:58
C>* 192.168.0.4/30 is directly connected, eth0
O>* 192.168.0.12/30 [110/20] via 192.168.0.18, eth1, 00:00:03
O 192.168.0.16/30 [110/10] is directly connected, eth1, 00:00:58
C>* 192.168.0.16/30 is directly connected, eth1
O>* 192.168.0.20/30 [110/20] via 192.168.0.6, eth0, 00:00:06

Listing 7.19: Logging in and running show ip route from r4

7.4.10 Simulation Results
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The results of the measurement process can then be analysed. The
routing table of r3 is shown in Listing G.25 and post-processed, where
the IP addresses are reverse-mapped to the respective interface ele-
ments, is shown in Listing 7.20. Additional diagnostic outputs in-
clude the OSPF neighbours, shown in Listing G.26, or the BGP neigh-
bours, shown in Listing 7.22, and Listing G.27. Another form of
results collection is to view the path taken across a network using
the traceroute command, as shown in Listing 7.21.

r3# sh ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

I - ISIS, B - BGP, > - selected route, * - FIB route

B>* 10.0.0.0/24 [200/0] via lo:1.r4 (recursive via eth1.r4, eth1),
00:04:56

O>* lo:1.r1/32 [110/20] via eth1.r1, eth0, 00:06:12
O>* lo:1.r2/32 [110/30] via eth1.r1, eth0, 00:06:05

* via eth1.r4, eth1, 00:06:05
O lo:1.r3/32 [110/10] is directly connected, lo, 00:06:57
C>* lo:1.r3/32 is directly connected, lo
O>* lo:1.r4/32 [110/20] via eth1.r4, eth1, 00:06:05
B>* 10.0.1.0/24 [200/0] via lo:1.r4 (recursive via eth1.r4, eth1),

00:04:56
C>* 127.0.0.0/8 is directly connected, lo
C>* 172.16.0.0/16 is directly connected, eth2
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B>* 192.168.0.0/24 [200/0] via lo:1.r4 (recursive via eth1.r4, eth1),
00:04:56

O>* 192.168.0.0/30 [110/20] via eth1.r1, eth0, 00:06:12
O 192.168.0.4/30 [110/10] is directly connected, eth0, 00:06:57
C>* 192.168.0.4/30 is directly connected, eth0
O>* 192.168.0.8/30 [110/20] via eth1.r4, eth1, 00:06:05
O 192.168.0.16/30 [110/10] is directly connected, eth1, 00:06:05
C>* 192.168.0.16/30 is directly connected, eth1

Listing 7.20: Post-processed show ip route from r3

hostname r3:~# traceroute 10.0.1.1
traceroute to 10.0.1.1 (10.0.1.1), 64 hops max, 40 byte packets
1 192.168.0.18 (192.168.0.18) 1 ms 0 ms 0 ms
2 10.0.1.1 (10.0.1.1) 1 ms 1 ms 1 ms

Listing 7.21: Output of traceroute from r3 to r5

r4# sh ip bgp summary
BGP router identifier 10.0.0.4, local AS number 1
RIB entries 5, using 320 bytes of memory
Peers 4, using 10064 bytes of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.0.0.1 4 1 27 30 0 0 0 00:25:20 0
10.0.0.2 4 1 30 30 0 0 0 00:25:15 3
10.0.0.3 4 1 27 30 0 0 0 00:25:20 0
192.168.0.22 4 2 31 31 0 0 0 00:27:15 1

Total number of neighbors 4

Listing 7.22: show ip bgp summary from r4

7.4.11 Conclusion

In this section we have presented an implementation which we al-
lowed us to demonstrate our approach is feasible and able to gener-
ated correct configurations.

7.5 prior publications

The work of this chapter has been previously published. In an early
joint paper, Nguyen et al. [77], a framework for creating testbed for
networks was proposed. This used an object-oriented approach. This
paper was primarily focussed on BGP configuration.

A second paper was presented as demonstration [55]. This was
more closely aligned to this thesis in that it introduced a graph-
based intermediate format, visual capture of network topology and
policy, high-level network design, automated topology visualisation,
extensible configuration, and template-based low-level compilation.
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A third paper [54] refined these concepts, enhanced the automated
visualisation system, and presented a workflow for data collection
and processing from the network simulation.

Finally, the work presented in Knight et al. [57] presented the con-
cepts described in this thesis with an emphasis on an experimentation
framework. This introduced the attribute graph concept which was
expanded to Network Views in Chapter 4.

7.6 conclusion

In this chapter we have described how the theoretical methodology
described in Chapter 4, Chapter 5, and Chapter 6 has been imple-
mented and validated using software infrastructure. This implemen-
tation and validation enables us to address Research Question 5: What
are the scalability and extensibility characteristics for the compilation of
High-Level Network Configuration Policy to device configurations in terms
of network size and diversity of network protocols and target devices?, in
the four case studies in Chapter 8 which illustrate the correctness,
scalability and flexibility of the tool.
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In this chapter we use the experimentation setup described in Chap-
ter 7 to evaluate the approach described in this thesis, with four case
studies. This allows us to demonstrate the flexibility of the approach
to accommodate different topologies, protocol designs, and target
devices and platforms.

This will allow us to demonstrate how our approach and toolchain
addresses Research Question 5: What are the scalability and extensibility
characteristics for the compilation of High-Level Network Configuration
Policy to device configurations in terms of network size and diversity of
network protocols and target devices?

8.2 chapter overview

This chapter looks at four case studies.
The first case study revisits the Simplified Small Internet Example

topology from Chapters 4, 5, and 6, showing an implementation from
a Network Whiteboard description through to a running simulation
on Quagga routers in Netkit. This builds upon the House Topology
example described in Section 7.4.

The second case study relaxes the simplifying assumptions made in
Chapter 4, to implement the full Simplified Small Internet Example
topology from Di Battista et al. [25]. This demonstrates the use of
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the system to reproduce a more realistic example, with specific IP
addresses, multi-homed eBGP connections, and BGP routing policy.

The third case study focusses on a managed Layer 2 switching
network, through the use of VLANs. This presents the use of the
system in an Enterprise/Campus environment, in addition to the
Wide-Area Network examples of the first two case studies. This case
study revisits the theoretical VLAN topology and approach outlined
in Section 5.7.2. In order to validate this case study we use the Cisco
IOSv router and IOSvL2 managed switch virtual machines, running
inside the Cisco VIRL simulation platform. This allows us to also
demonstrate the use of our framework to target alternative device
operating systems, and simulation platforms. We validate the con-
figurations through the output of switch and router show commands,
and a traceroute across the network topology.

Finally, the fourth case study looks at the performance of the sys-
tem in a large-scale example of 1,154 routers divided into 40 Au-
tonomous Systems. We show that the system is able to allocate IP
addresses, designate route reflectors, build the OSPF, iBGP and eBGP
topologies, and generate configuration files for the routers in under
ten seconds on a modern MacBook-Pro. This demonstrates how our
approach is able to handle large-scale networks.
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8.3 simplified netkit small-internet lab

8.3.1 Introduction

In this section we revisit the Small Internet lab example from Netkit,
used in Chapters 4, 5, and 6, to show how it can be reproduced using
AutoNetkit, the Python reference implementation of our approach.

We begin by describing the Network Whiteboard used to capture
the high-level requirements. We then discuss the use of the Design
Functions originally discussed in Section 7.4.3, We then compile for
the Netkit target platform, using the Netkit platform compiler, and
Quagga device compiler developed in Section 7.4.4. We conclude
by presenting experimental results gathered from a running Netkit
simulation. We show the output of the traceroute command and
plot this against the topology diagram to validate the routing protocol
operation. We also discuss the output of the routing table and BGP
peering diagnostic commands.

A mapping of the names used in the theoretical examples in Chap-
ter 4, Chapter 5, and Chapter 6 to those used in this and the next case
study is shown in Table 8.1.

Table 8.1: Translation of names from theoretical example

Theoretical Name Case Study Name Theoretical Name Case Study Name

1 as1r1 8 as10r2

2 as20r3 9 as10r1

3 as20r2 10 as10r3

4 as20r3 11 as300r1

5 as200r 12 as300r3

6 as30r1 13 as300r2

7 as40r1 14 as300r4

8.3.2 Methodology

The methodology used to implement and verify this case study is
shown in Figure 8.1. In this case study we only vary the Network
Whiteboard, with the rest of the toolchain as shown in Figure 7.7.
This allows us to demonstrate the versatility of decoupling the net-
work design and configuration generation from the high-level specifi-
cation.
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For this example the Network Whiteboard is represented in GraphML
format rather than specified programmatically in Python. We discuss
the benefits of this approach. The remainder of the Design Functions
and Compilation steps are as per the House example in Chapter 7

and follows the same methodology. We use the same series of col-
lection commands, traceroute, show ip bgp, and show ip route to
gather results about the running network and to allow us to verify the
configurations generated accurately represent the high-level Network
Whiteboard specification.
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Figure 8.1: Configuration Generation and Verification methodology for Sim-
plified Small Internet Case Study
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Figure 8.2: Visualisation of Network Whiteboard

8.3.3 Network Whiteboard

The Network Whiteboard for the Small Internet example is created
as a GraphML [12] file. This captures the key components of the
topology from Di Battista et al. [25] shown previously in Figure 4.31.

The GraphML file was initially created with the freely available
yEd1 GUI graph editor software tool, as shown in Figure 8.3. We
then load the GraphML file using the built-in support for GraphML
in NetworkX. This is loaded using the AutoNetkit wrapped around
the NetworkX GraphML loader, as shown in Listing H.1.

For clarity, in this example we then iterate over the nodes and
edges of the GraphML file to produce two Python dictionaries. These
are reproduced in Listing H.2 for the nodes, and Listing H.3 for the
edges. This shows the simplicity of the data required for the Network
Whiteboard. We can see the node information contains the asn value,
which is used to create the OSPF, iBGP and eBGP Network Views.
This then creates the input overlay for the Abstract Network Model
which corresponds to the Network Whiteboard.

Finally, we update the visualisation with the updated Abstract Net-
work Model, as shown in Listing H.4. This single command shows
the simplicity of visualising the Abstract Network Model using the
automated visualisation component of our implementation. The re-
sult of the visualisation of the Abstract Network Model, showing the

1 http://www.yworks.com/products/yed

231

http://www.yworks.com/products/yed
http://www.yworks.com/products/yed


8.3 simplified netkit small-internet lab

Figure 8.3: Drawing of Network Whiteboard using yEd editor.

input overlay (corresponding to the Network Whiteboard) is shown
in Figure 8.2.

8.3.4 Design Functions

In this section we show how the Design Functions which have been
discussed in previous chapters can be implemented using Python
code within our framework. We build upon the Design Functions
presented in Section 7.4.3 to show their use in implementing the De-
sign Functions discussed from a theoretical perspective in Section 5.6.

We note that many of these Design Functions share the same logic
as those shown in the House Example in Section 7.4.3. This illustrates
how the same Design Functions can be used to create the appropriate
Network Views for different input topologies, using the Network
Whiteboard abstraction.

For each Design Function, we show a visualisation of the resulting
Network View using our automated visualisation system, which we
discussed in Section 7.2.3.

Physical Network View

The physical Design Function selects the nodes, edges, and interfaces
from the input overlay. Here we assume that all links are physical. If
other link types were used, then a filtering step could be used to filter
only the physical links from the input overlay.
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The Design Function for the physical overlay is shown in Listing H.5,
with the visualisation shown in Figure 8.4. As the topology only
contains physical devices and links, the physical overlay visualisation
shown in Figure 8.4 looks the same as the input overlay visualisation
shown in Figure 8.2.
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as30r1 as40r1

as20r1

as100r1as100r2

as100r3

as200r1

as300r2

as300r4as300r3

as300r1

Figure 8.4: Visualisation of Physical Network View

Layer 2 Network View

The Layer 2 Network View is shown in Figure 8.5. The Design Func-
tion used to construct it is shown in Listing H.6. These are the same
Layer 2 Design Functions as shown in Section 7.4.3 and used in the
House Example in Chapter 7.

IP Addressing Network View

Like the previous Design Functions, the IP Addressing Design Func-
tion uses the same logic as in the House Example shown in Fig-
ure 7.4.3. The infrastructure addresses are shown in Figure 8.6, and
loopbacks in Figure 8.7. The code for this Design Functions is shown
in Listing H.8

Layer 2 Connectivity Network View

The Layer 2 Connectivity Network View is shown in Figure 8.8. The
Design Function used to construct it is shown in Listing H.7, and also
is identical to that used in the House Example shown in Section 7.4.3.
This illustrates the power of decoupling Design Functions from the

233



8.3 simplified netkit small-internet lab

b
b

b
b

b

b

b

b

b

b

b

b
b

b

b

b

b

Figure 8.5: Visualisation of Layer 2 Network View
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Figure 8.6: Visualisation of IP Network View. Interface labels show IP
addresses. For visual clarity, broadcast domains have been
removed, links manually re-aligned, and only the 3rd and 4th
octets of 192.168.x.y are shown.
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Figure 8.7: Visualisation of IP Network View. Node labels show loopback IP
Addresses.

topology specification, in that the same Design Functions can be used
for different input topologies, express using the Network Whiteboard
abstraction.

OSPF Network View

The OSPF Design Function is shown in Listing H.9, and for the ad-
vertisement of network prefixes in Listing H.10. This again uses the
same logic as Section 7.4.3. The Visualisation of this Design Function
is shown in Figure 8.9.

iBGP Network View

The iBGP Network View is constructed using the code shown in
Listing H.11. This Design Function follows the same approach of that
shown in Section 7.4.3. The result of applying this Design Function
to the Small Internet topology is shown in Figure 8.10.

eBGP Network View

The final Design Function is for the eBGP Network View. The code
to create this Network View is shown in Listing H.12, and the code
to advertise the relevant network prefixes over eBGP is shown in
Listing H.13. Like the other Design Functions, this follows the same
logic as Section 7.4.3. The result of this Design Function is shown in
Figure 8.11.
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Figure 8.8: Visualisation of Layer 2 Connectivity Network View
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Figure 8.9: Visualisation of OSPF Network View. OSPF grouping shows
interface areas, within an ASN.
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Figure 8.10: Visualisation of iBGP Network View
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Figure 8.11: Visualisation of eBGP Network View
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Conclusion

In this section we have shown how the theoretical Design Functions
described in Section 5.6 can be used to construct the Network Views
shown in Section 4.5.

Further, we have shown how the Network Whiteboard, Network
View, and Design Function abstractions have allowed us to re-use
many of the Design Functions described in the House Example in
Section 7.4 to construct the appropriate Network Views for a different
input topology, expressed using a different Network Whiteboard.

In the Section 8.4, we will show how these Design Functions can be
extended to realise the full requirements of the Netkit Small Internet
Lab, by relaxing the simplifying assumptions made in Section 4.5.1.

We now show how the Abstract Network Model constructed using
the Design Functions in this section can be used to compile Quagga
configurations for the Netkit platform, and provide a series of results
that validate the correctness of the generated configurations.

8.3.5 Compilation

Netkit Platform Compiler

The Netkit Platform Compiler is shown in Listing H.14, and fol-
lows the same logic as the Netkit Platform Compiler discussed in
the House Example in Section 7.4.4. This shows how the platform
compilers can be re-used for different input topologies.

Quagga Device Compiler

The Quagga Device Compiler shown in Listing H.15 also follows the
same logic as the Quagga Device Compiler discussed in the House
Example in Section 7.4.4.

8.3.6 Simulation Results

We now discuss the simulation results collected from running the lab
in Netkit.

The routing table of as1r1 shown in Listing 8.1, and as20r1 shown
in Listing H.17 show their IGP and BGP routes.

as1r1# sh ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

I - ISIS, B - BGP, > - selected route, * - FIB route

C>* 127.0.0.0/8 is directly connected, lo
C>* 172.16.0.0/16 is directly connected, eth3
O 172.16.0.1/32 [110/10] is directly connected, lo, 00:03:13
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C>* 172.16.0.1/32 is directly connected, lo
B>* 172.16.1.0/24 [20/0] via 192.168.0.1, eth0, 00:02:49
B>* 172.16.2.0/24 [20/0] via 192.168.0.5, eth1, 00:02:21
B>* 172.16.3.0/24 [20/0] via 192.168.2.5, eth2, 00:02:21
B>* 172.16.4.0/24 [20/0] via 192.168.0.1, eth0, 00:02:19
B>* 172.16.5.0/24 [20/0] via 192.168.0.1, eth0, 00:02:19
B>* 172.16.6.0/24 [20/0] via 192.168.2.5, eth2, 00:01:51
C>* 192.168.0.0/30 is directly connected, eth0
C>* 192.168.0.4/30 is directly connected, eth1
B>* 192.168.1.0/24 [20/0] via 192.168.0.1, eth0, 00:02:49
B>* 192.168.2.0/24 [20/0] via 192.168.2.5, eth2, 00:02:21
C>* 192.168.2.4/30 is directly connected, eth2
B>* 192.168.3.0/24 [20/0] via 192.168.0.1, eth0, 00:02:19
B>* 192.168.4.0/24 [20/0] via 192.168.0.1, eth0, 00:02:19
B>* 192.168.5.0/24 [20/0] via 192.168.2.5, eth2, 00:01:51

Listing 8.1: show ip route output for as1r1

The BGP peers of as1r1 shown in Listing H.18 shows eBGP and
iBGP peers. The traceroute from as300r1 to as100r2 is shown in List-
ing 8.2, and shows the path through multiple ASes over eBGP and
OSPF to the destination Listing H.20. A processed result is shown in
Listing H.20, with the plotted path shown in Figure 8.12.

as20r2

as20r3

as1r1

as30r1 as40r1

as20r1

as100r1as100r2

as100r3

as200r1

as300r2

as300r4as300r3

as300r1

Figure 8.12: traceroute from as300r1 to as100r2.

as300r1:~# traceroute 10.0.4.2
traceroute to 10.0.4.2 (10.0.4.2), 64 hops max, 40 byte packets
1 192.168.5.1 (192.168.5.1) 0 ms 0 ms 0 ms
2 192.168.5.5 (192.168.5.5) 1 ms 0 ms 0 ms
3 192.168.5.10 (192.168.5.10) 0 ms 1 ms 0 ms
4 192.168.2.2 (192.168.2.2) 1 ms 1 ms 1 ms
5 192.168.2.6 (192.168.2.6) 1 ms 1 ms 1 ms
6 192.168.0.1 (192.168.0.1) 1 ms 1 ms 1 ms
7 192.168.1.9 (192.168.1.9) 1 ms 1 ms 1 ms
8 192.168.1.13 (192.168.1.13) 1 ms 1 ms 1 ms
9 10.0.4.2 (10.0.4.2) 1 ms 1 ms 1 ms

Listing 8.2: Output of traceroute from as300r1 to as100r2
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8.3.7 Conclusion

In this section we have shown how we can use our system to repro-
duce the example that was described in the theoretical Chapter 4,
Chapter 5, and Chapter 6. We have shown how the system can be
used to launch and measure valid configurations for a larger scale
topology, with multiple autonomous systems interconnected. The
measurement results confirm that the network is configured correctly.
We note that this approach is scalable, and that adding new Network
Elements, new Network Element Connections, or changing IP ad-
dress pools can be readily handled, with the resulting configurations
generated automatically.

In the next case study we relax the simplifying assumptions made
in Chapter 4, in order to accurately reproduce the Small Internet
topology described in Di Battista et al. [25].
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8.4 complete netkit small-internet lab

8.4.1 Introduction

In this case study we build upon the simplified small Internet lab
described in the previous case study, by relaxing our simplifying
assumptions made in Section 4.5.1. This allows us to reproduce the
topology described in Di Battista et al. [25]. We use this to demon-
strate the flexibility of our approach in a more realistic scenario in-
volving specific IP addresses, route redistribution, and BGP policies.

We begin by describing the simplifying assumptions that we relax.
We then explain the Network Whiteboard that is used to describe the
network topology and policy to be built, and provide an overview
of each of the Design Functions. These Design Functions build on
the previous case study, so we focus on the additions that enhance
functionality in order to realise the complete small Internet example.
We then explain the enhancements required in the compilation and
template process. Finally, we launch the resulting configurations, and
show the outputs of both the traceroute command, and the routing
protocols to demonstrate a correctly configured network. The physi-
cal topology and IP addressing is shown in Figure B.2, and the BGP
policy used is shown in Figure B.1.

8.4.2 Relaxation of Simplifications

In this Case Study we relax the assumptions we made in Section 4.5.1.
We first list the assumptions made, and then discuss how we will
remove each simplifying assumption. The assumptions we made are
as follows:

1. There are no end-host subnets.

2. Autonomous systems are not multi-homed.

3. IP addresses are automatically allocated.

4. OSPF is used at the IGP within each autonomous system.

5. All iBGP peerings are full-mesh, and routes are not redistributed
into the IGP.

6. There is no eBGP policy.

7. All links are point-to-point.

We relax these simplifications as follows:
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1. We introduce the use of a server device type to represent end-
host subnets. As shown in Figure 8.14, each of the autonomous
systems 20, 30, 40, 100, 200, and 300 have one or more server
nodes representing end-host subnets. These have the relevant
prefix, such as 20.1.1.0/24 or 200.2.0.0/16, specified on their phys-
ical interface.

2. We add the eBGP peering links from as100r1 to as20r1, and from
as300r1 to as20r1.

3. We manually specify the IP addresses on the Network White-
board, as shown in Listing 8.4.

4. We use RIP as the routing protocol in the autonomous systems,
and create the appropriate Design Function in Figure 8.4.5.

5. We specify the appropriate iBGP or route-redistribution approach
on the Network Whiteboard, as shown in Listing 8.5. These are
then handled in the Design Functions in 8.4.5, Figure 8.4.5, and
Figure 8.4.5.

6. eBGP policies are specified on the Network Whiteboard and
Listing 8.5. These can be seen in Figure 8.16. The application
of these policies is detailed in the eBGP Design Functions of
Figure 8.4.5.

7. We introduce unmanaged layer 2 switch device types into au-
tonomous systems 20 and 300, as shown in Figure 8.14.

With the removal of these simplifications, we will now demonstrate
how our approach can be used to produce a replication of the Netkit
BGP lab Small Internet described in Di Battista et al. [25], through the
Network Whiteboard high-level specification.

8.4.3 Methodology

The methodology used to implement and verify this case study is
shown in Figure 8.13. We follow the same general approach as the
methodology for the House example and Simplified Small Internet
case study, but make a number of variations.

The Network Whiteboard is specified in GraphML format, and con-
tains additional information to represent the switches and end-hosts
in the network, as well as IP address information and BGP primary
and backup links. We then programmatically augment this with infor-
mation on BGP policy relationships. The Layer 2 Design Function is
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extended to take into consideration the switches in AS20 and AS300,
and the end-host devices in numerous autonomous systems. The IP
Address Design Function is modified to use the addresses specified
on the Network Whiteboard rather than an automated allocation al-
gorithm. The OSPF Design Function is replaced with the RIP Design
Function, and takes into consideration route redistribution. The iBGP
Design Function is extended to consider the redistribution policies
specified on the Network Whiteboard. Finally, the eBGP Design
Function is extended to allow for BGP policy to be expressed.

We extend the Quagga Device Compiler and Quagga Templates to
allow for the RIP routing protocol, and BGP policy. The remainder of
the process such as the Netkit Platform Compiler and the collection
commands run are as per previous methodologies. We use these col-
lection commands to verify that the configurations generated match
the Netkit Small Internet Lab described by Battista et al. [25].

Configuration

Design Functions

Network
Whiteboard

IP Address
Design Function

Layer 2 Conn.
Design Function

RIP
Design Function

iBGP
Design Function

eBGP
Design Function

Layer 2
Design Function

Physical
Design Function

Quagga Device
Compiler

Template
Assembler

Intermediate
Device Model

Quagga
Device Configs

Netkit Platform
Compiler

Intermediate
Hardware Model

Intermediate
Platform Model

Platform 
Assembler

Netkit
Platform Config

Quagga Templates

Netkit Template

Abstract
Network Model

CollectionSimulation

Netkit Simulation show ip bgptraceroute show ip route

Visualisation

Visualisation
Server

Visualisation
Client

Figure 8.13: Configuration Generation and Verification methodology for
Complete Small Internet Case Study
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8.4.4 Network Whiteboard

The Network Whiteboard for this topology is shown in Figure 8.14.
We first create an Abstract Network Model, as shown in Listing H.21.

as20s1

as300sw1

as300s1

as40s1

as100r1as100r2

as100r3

as200s1 as30s1

as20r2

as20r3

as20r1

as300r4

as300r2

as20sw1

as300r3

as300r1

as40r1

as1r1

as100s2

as100s1

as200r1 as30r1

Figure 8.14: Visualisation of Network Whiteboard

Our Network Whiteboard is based on a GraphML file constructed
using the yEd editor, as shown in Figure 8.15. In this Network
Whiteboard, we have three types of network devices, denoted using
the device_type attribute. These are router, server, and switch. In
this case study, switch nodes represent basic unmanaged switches,
and server nodes represent end hosts. The edges between the nodes
are used to carry information regarding IP Addressing, and where
applicable, BGP policy. We thus have used the Network Whiteboard
abstraction to capture the high-level aspect of network configuration
policy.

As shown in the code of Listing H.22, we first load this GraphML
file. We then post-process the nodes by updating their attributes.
We form a list of both the nodes and the edges, which we then
add in a later step, covered below. The raw dictionary form of the
post-processed nodes and their associated attribute data is shown
in Listing 8.3, and the raw dictionary form of the edges and their
associated attribute data is shown in Listing 8.4.

{
"as1r1": {"asn": 1, "device_type": "router", "x": 519, "y": -209},
"as100r1": {"asn": 100, "device_type": "router", "x": 38, "y": 291},
"as100r2": {"asn": 100, "device_type": "router", "x": -123, "y": 291},
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Figure 8.15: Drawing of Network Whiteboard using yEd editor.

"as100r3": {"asn": 100, "device_type": "router", "x": -51, "y": 381},
"as100s1": {"asn": 100, "device_type": "server", "x": -252, "y": 291},
"as100s2": {"asn": 100, "device_type": "server", "x": -51, "y": 523},
"as20r1": {"asn": 20, "device_type": "router", "x": 264, "y": -44},
"as20r2": {"asn": 20, "device_type": "router", "x": 9, "y": -44},
"as20r3": {"asn": 20, "device_type": "router", "x": 128, "y": -173},
"as20s1": {"asn": 20, "device_type": "server", "x": -2, "y": -190},
"as20sw1": {"asn": 20, "device_type": "switch", "x": 137, "y": -44},
"as200r1": {"asn": 200, "device_type": "router", "x": 296, "y": 127},
"as200s1": {"asn": 200, "device_type": "server", "x": 296, "y": 252},
"as30r1": {"asn": 30, "device_type": "router", "x": 486, "y": 127},
"as30s1": {"asn": 30, "device_type": "server", "x": 486, "y": 252},
"as300r1": {"asn": 300, "device_type": "router", "x": 632, "y": 291},
"as300r2": {"asn": 300, "device_type": "router", "x": 774, "y": 291},
"as300r3": {"asn": 300, "device_type": "router", "x": 632, "y": 402},
"as300r4": {"asn": 300, "device_type": "router", "x": 774, "y": 402},
"as300s1": {"asn": 300, "device_type": "server", "x": 724, "y": 615},
"as300sw1": {"asn": 300, "device_type": "switch", "x": 724, "y": 497},
"as40r1": {"asn": 40, "device_type": "router", "x": 677, "y": 127},
"as40s1": {"asn": 40, "device_type": "server", "x": 852, "y": 127}
}

Listing 8.3: List of nodes with their attribute data

[
("as1r1", "as20r3", "eth2", "eth0", "11.0.0.20/30", 22, 21, None),
("as1r1", "as40r1", "eth0", "eth2", "11.0.0.28/30", 30, 29, None),
("as100r1", "as100r3", "eth2", "eth0", "100.1.0.0/30", 1, 2, None),
("as100r1", "as20r1", "eth1", "eth1", "11.0.0.4/30", 5, 6, "backup"),
("as100r2", "as100r1", "eth0", "eth3", "100.1.0.4/30", 6, 5, None),
("as100r3", "as100r2", "eth1", "eth1", "100.1.0.8/30", 10, 9, None),
("as100s1", "as100r2", None, "eth2", "100.1.2.0/24", None, 1, None),
("as100s2", "as100r3", None, "eth2", "100.1.3.0/24", None, 1, None),
("as20r1", "as20sw1", "eth2", None, "20.1.1.0/24", 1, None, None),
("as20r1", "as30r1", "eth3", "eth3", "11.0.0.16/30", 17, 18, None),
("as20r2", "as100r1", "eth0", "eth0", "11.0.0.0/30", 2, 1, "primary"),
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("as20r2", "as20sw1", "eth1", None, "20.1.1.0/24", 2, None, None),
("as20r3", "as20sw1", "eth1", None, "20.1.1.0/24", 3, None, None),
("as20s1", "as20sw1", None, None, None, None, None, None),
("as200r1", "as20r1", "eth0", "eth0", "11.0.0.32/30", 33, 34, None),
("as200s1", "as200r1", None, "eth1", "200.2.0.0/16", None, 1, None),
("as30r1", "as1r1", "eth2", "eth1", "11.0.0.24/30", 25, 26, None),
("as30r1", "as300r1", "eth0", "eth0", "11.0.0.8/30", 10, 9, None),
("as30r1", "as30s1", "eth1", None, "30.3.3.0/24", 1, None, None),
("as300r1", "as300r3", "eth1", "eth1", "200.1.0.0/18", 1, 2, None),
("as300r3", "as300sw1", "eth0", None, "200.1.128.0/17", 1, None, None),
("as300r4", "as300r2", "eth0", "eth1", "200.1.64/18", 2, 1, None),
("as300r4", "as300sw1", "eth1", None, "200.1.128.0/17", 2, None, None),
("as300sw1", "as300s1", None, None, None, None, None, None),
("as40r1", "as300r2", "eth0", "eth0", "11.0.0.12/30", 14, 13, None),
("as40s1", "as40r1", None, "eth1", "40.4.4.0/24", None, 1, None),

]

Listing 8.4: List of edges with their attribute data, of form (src_id, dst_id,
src_int_ip, dst_int_ip, subnet, src_ip, dst_ip, bgp_policy)

We also provide supplementary data describing the commercial
relationships between each Autonomous System, to capture the BGP
policy relationships shown in Figure B.1. This provides a practical
demonstration of the theoretical approach to capturing BGP policy
described in Chapter 5. We also capture the redistribution policy
used within the Autonomous Systems. These pieces of information
are captured as dictionaries, where the dictionary key corresponds to
the asn label of the node. This is shown in Listing 8.5. A visualisation
of the input overlay with the nodes annotated with their BGP policy
roles is shown in Figure 8.16.
bgp_roles = {

1: "b",
20: "p",
30: "p",
40: "p",
100: "c",
200: "c",
300: "c"

}

bgp_redist_policy = {
20: "ibgp",
100: "redistribute_igp",
300: "redistribute_igp",

}

bgp_load_share_policy = {
300: True

}

Listing 8.5: Specification of BGP Roles

We note that the policy role attributes could also be stored in the
dictionary, and used directly in the BGP policy creation. This would
also be a valid approach, and would avoid duplication of information.
We apply the policy attribute to each node in the Autonomous System
for simplicity of explaining the Design Functions.
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Figure 8.16: Visualisation of Network Whiteboard showing BGP Roles

We then add the nodes to the Network Whiteboard. This is shown
in Listing H.23. In this step, we first add the nodes with the properties
shown in the raw dictionary in Listing 8.3. We mark each router
with a simulate attribute to be true, to allow us to filter out only
the nodes which we wish to simulate on the Netkit platform. For
this example we do not simulate the unmanaged switches (as these
are represented by a shared virtual wire in Netkit), or the servers
(which act as placeholders for end-host subnets). We also map the
bgp_role previously discussed for the node, based on the asn attribute
of the node. Finally, we map the redistribution policy previously
described. If the redistribution policy for an asn is ibgp then we also
mark the ibgp attribute of the node to bet true. This is used in the
ibgp Design Function. If the redistribution policy is not ibgp then we
set the redistribute_bgp_to_igp to true, to be used for routing protocol
redistribution.

The next step is to add the edges. This is done in Listing H.24,
where we iterate over each edge in the edges dictionary. In this
dictionary, each edge is a tuple of the form (src_id, dst_id, src_int_id,
dst_int_id, subnet, src_ip, dst_ip, bgp_policy). We first map the src_id
and dst_id into the source and destination node objects. We then
respectively add the interface for the src_int_id and dst_int_id. We use
directed edges in the GraphML file, so the src and dst correspond to
the source and destination node and interface of the directed edge.
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This allows us to use GraphML and associated tools such as yEd to
easily create the Network Whiteboard for this case study.

The next step is to process the IP Address from the subnet which
is of the form a.b.c.d/x where x is the prefix length. For simplicity,
we express only the last octet of the IP Address in the src_ip and
dst_ip attributes in the GraphML input. For instance a src_ip of 1
and a dst_ip of 2 for a subnet of 192.168.0.0./24 would correspond to
192.168.0.1 and 192.168.0.2. We perform this transformation to form
the relevant ip and subnet attributes on the interfaces. Finally, we
create the edge connecting the interfaces. If the bgp_policy attribute
is set, then this is stored on the edge, for use in the eBGP Design
Functions. We also define a utility function, neigh_ave_xy , to return
the sum of neighbour x and y co-ordinates for a given node. This is
shown in Listing H.26, and is used in later Design Functions. The
result of the input overlay Design Function is shown in Figure 8.14.
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8.4.5 Design Functions

Physical Network View

The physical Network View is shown in Figure 8.17. The Design
Function to create this overlay is shown in Listing H.25, as is similar
to previous physical design functions, where the nodes and edges are
added from the input overlay, with the platform and syntax attributes
set to netkit and quagga respectively.
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as200r1 as30r1

Figure 8.17: Visualisation of Physical Network View

Layer 2 Network View

The layer 2 Network View is shown in Figure 8.18. We first create the
layer 2 Network View, by adding the nodes from the physical Network
View. We then form the broadcast domains, which consists of two
main steps: one to split point-to-point links between routers, and the
other to form the broadcast domains that arise from the unmanaged
switches.

The step to split the point-to-point links follows the same logic as
in previous case studies. We use the neigh_ave_xy utility function
to simplify the logic of averaging out the location of the broadcast
domain pseudo-node. This step is performed on the edges which
connect a layer 3 device to another layer 3 device, by using the edge
filtering function. This ensures that we only split point-to-point links
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Figure 8.18: Visualisation of Layer 2 Network View

between layer 3 devices, and therefore do not need to modify this
logic to handle the unmanaged layer 2 switches.

The second step differs to previous case studies, as we need to
handle unmanaged switches. To do this, we create a broadcast domain
pseudo-node representing the switch, create the appropriate interface
on it, and connect it to the nodes connected to the switch. This
step could be done in alternative ways, such as mapping the switch
directly to a broadcast domain pseudo-node.

The code for this step is shown in Listing H.27, with the resulting
layer 2 overlay visualised in Figure 8.18.

IP Addressing Network View

The IP Addressing Network View differs from previous examples. Pre-
viously we have used automated address allocation algorithms to
allocate loopback and infrastructure IP Addresses. In this case study,
we wish to use the IP addresses specified on the topology as shown
in Figure B.2. These addresses should then be advertised by the ap-
propriate routing protocols. Where possible, we wish to present an IP
Addressing Network View that is similar to as if it were constructed
using automated allocation algorithms. This includes the interface
IP address attributes, the subnet being stored on the broadcast do-
main pseudo-nodes, and the relevant address-block allocations being
stored as dictionaries on the overlay itself. This allows us to re-use

250



8.4 complete netkit small-internet lab

previous Design Functions for the routing protocols, and to decou-
ple automated from manual allocation from the specification of the
routing Design Functions.

The first step is to create the ip overlay in the Abstract Network
Model. We add the nodes and the edges from the layer 2 overlay,
and then copy across the interface attribute for the ip and subnet from
the input overlay. We then create two dictionaries, one to store the
infrastructure IP address allocations, and one to store the end host
IP allocations. These are infra_allocations and host_allocations. These
allocations are stored separately as they are advertised differently in
the routing protocols. We then use the group_by function to group
the nodes by their asn attribute. We provide the list of broadcast domain
pseudo-nodes as the second parameter to this function. This results
in a series of (asn, pseudo-nodes) tuples to iterate over.

We then iterate over each broadcast domain pseudo-node within the
asn grouping. Similar to in automated IP addressing, we then look
at the neighbours of the broadcast domain. We iterate over each
neighbour interface of the broadcast domain. For convenience, we
map the ip attribute and subnet attribute to be a Netaddr [71] IPAddress
and IPNetwork class, respectively. This simplifies IP addressing tests
and aggregation, by allowing us to leverage the inbuilt functions of
the Netaddr Python library.

For each neighbour interface, we store the subnet attribute in a
temporary variable. We then set this attribute on the broadcast domain
pseudo-node itself as the subnet variable. In this example we simply
choose one of the subnet values. We could make this more rigorous by
ensuring that each subnet attribute is identical for each neighbour in-
terface of a broadcast domain, by following the verification functions
we described in Section 9.3.3. Finally, if the asn attribute is not None,
then we record the subnet value into the infra_allocations dictionary for
the asn value to which the broadcast domain belongs. If the broadcast
domain is connected to any servers, then we also record it into the
host_allocations dictionary. The result of these dictionaries is shown in
Listing 8.6 and Listing 8.7.

{
20: ["20.1.1.0/24"],
30: ["30.3.3.0/24"],
40: ["40.4.4.0/24"],
100: ["100.1.3.0/24", "100.1.0.8/30", "100.1.0.0/30",

"100.1.0.4/30", "100.1.2.0/24"],
200: ["200.2.0.0/16"],
300: ["200.1.0.0/18", "200.1.64.0/18", "200.1.128.0/17"]

}

Listing 8.6: Small Internet Infrastructure Address Allocations
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{
20: ["20.1.1.0/24"],
30: ["30.3.3.0/24"],
40: ["40.4.4.0/24"],
100: ["100.1.3.0/24", "100.1.2.0/24"],
200: ["200.2.0.0/16"], 300: ["200.1.128.0/17"]

}

Listing 8.7: Small Internet Loopback Address Allocations

The result of this step is shown in Figure 8.19, where the broadcast
domain pseudo-node labels show the subnet attribute, and the inter-
face labels show the ip attribute. The code for this Design Function is
shown in Listing H.29.
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Figure 8.19: Visualisation of IP Addressing Network View. Node labels
show the subnet attribute, and interface labels show the ip
attribute

Layer 2 Connectivity Network View

The Layer 2 Connectivity Network View is constructed like in previous
examples, by exploding the broadcast domain nodes. This is shown in
Figure 8.20, with the Design Function code shown in Listing H.28.

RIP Network View

We now can construct the routing protocol Network Views. The
Netkit Small Internet Lab shown in Di Battista et al. [25] uses the RIP
(Routing Information Protocol) as the IGP within the autonomous
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Figure 8.20: Visualisation of Layer 2 Connectivity Network View

Figure 8.21: Visualisation of RIP Network View
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systems. This differs to our previous examples which used the OSPF
routing protocol. As we will see in this section, the Design Func-
tion for RIP is similar to OSPF, it is only in the compiler that we
need to generate the different syntax. The abstraction of Network
Views, where edges represent connectivity, allows the common pat-
terns across protocols to be expressed.

The rip Network View is constructed by adding the routers from
the input overlay (the physical overlay could also be used here), and
the edges from the layer 2 connectivity overlay. This creates the basic
connectivity for the overlay, as shown in Figure 8.21. The code for
this step is shown in Listing H.30.

To reproduce this case study, we also need to consider the redis-
tribution of routes, and the advertisement of relevant IP Address
prefixes. We now discuss the Design Function steps to perform these
tasks.

Through inspection of the router configurations of the lab in Di
Battista et al. [25], we can infer that the policy is to use the redistribute
connected command on a router, if that router connects to a server.
This means that we will redistribute connected routes on routers
which connect to end-host prefixes, as on our Network Whiteboard
we denote end-host prefixes through the use of the server node.

The set of nodes for which the redistribute connected attribute is set
to true is shown in Listing 8.8.

[as20r1, as20r2, as20r3, as100r2, as100r3, as300r3, as300r4]

Listing 8.8: List of nodes for which redistribute connected are set for RIP
Network View

Finally, we set the attributes to advertise the relevant IP address
prefixes for each router through the RIP protocol. The code to per-
form this is shown in Listing H.32.

iBGP Network View

The ibgp Network View is shown in Figure 8.22. This differs to
previous examples, where we previously connected all nodes in an
ASN in a full-mesh configuration. In this case study, we follow the
iBGP topology policy inferred from the routing configurations of Di
Battista et al. [25]. For this, only the routers in asn20 are connected
using iBGP. The other ASes use redistribution to share the routes.

This case study also differs to previous examples in that the iBGP
sessions are bound to the physical interfaces, rather than the loopback
interface.
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Figure 8.22: Visualisation of iBGP Network View

The code to show how these cases are handled is shown in List-
ing H.33. Most notably, we first filter only the nodes which have the
ibgp attribute in the input overlay set to true, and we bind the iBGP
session endpoint to the physical connection interface, rather than the
loopback interface, as this example does not use loopback addressing,
as shown in Figure B.2.

eBGP Network View

Note: we hard-code policies, such as which to apply for backbone,
provider, customer, for prefix advertisement and prefix list/route
maps, here as a first step. These could be expanded later to be defined
externally, with the appropriate policy function then applied. This
would generalise the policy mechanics further.

create ebgp network view The final Network View to create
is the ebgp Network View. The Design Function for this Network
View is more complicated than previous examples, as we need to
incorporate BGP policy, and form the appropriate access lists and
prefix lists to implement this policy.

The first step is to create the ebgp Network View, as shown in
Listing H.34, and visualised in Figure 8.23. This logic follows that
of previous case studies. It is in the mapping of policies that we
expand on previous logic.
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Figure 8.23: Visualisation of eBGP Network View

map policies The first step is to map the eBGP Policy Roles, as
shown in Listing H.35. This function copies the bgp_role attribute
for each node from the Network Whiteboard to the eBGP Network
View. We also define a bgp_rank function, that orders the roles of b,
p and c (backbone, provider, and customer) to 1, 2, and 3), to allow for
comparisons in later functions.

ip address prefix advertisements The next step is to mark
the prefixes to be advertised by eBGP. This code is shown in List-
ing H.36 and is more complex than in previous case studies. This
applies the policy designated on the Network Whiteboard, and is
based on the logic implied from the configurations and slides of Di
Battista et al. [25]. We now examine each component of this step.

We first iterate over each node in the eBGP Network View, and get
the infrastructure and loopback address block for the asn to which
the node belongs. If the node has the bgp_role of b (is in a backbone
network), then we also advertise the default route of 0.0.0.0/0.

We then iterate over the eBGP sessions previously created in List-
ing H.34, and look at the bgp_role of each side of the session. We
use the bgp_rank function to easily compare the roles. If the session
is from a node that is lower in rank than the destination (such as
backbone to provider, or provider to customer) then we advertise the
prefixes of the node across the session. For instance we will advertise
backbone routes to a provider, and provider routes to a customer.
It can also occur that the rank is the same, such as for provider to
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provider routes (for example from as20r1 to as30r1). In this case, we
advertise the subnet of the interface of the node with the lower asn
(in this example as20r1 advertises the prefix of 11.0.0.16/30 to as30r1.
This is also inferred from the policy design rules of the example in
Di Battista et al. [25]. Additional logic could be handled through
designations on the Network Whiteboard.

We then advertise the prefixes of the ASN for both loopback, and
infrastructure, as per previous case studies. If the bgp_role of the node
is a customer, then we aggregate the prefixes into a /16 address block,
to be consistent with the example of Di Battista et al. [25]. Finally, we
set the list of prefixes to be advertised onto the node, to be used in
the compiler.

This case study also uses a form of load sharing policy for AS300.
This is specified using the bgp_load_share_policy data structure in List-
ing 8.5. It could also be marked on the nodes in the Network White-
board, like the bgp_role attribute. If an AS is marked as load sharing,
then we gather the eBGP nodes in that ASN, and find the common
networks that the nodes advertise, based on the advertisement at-
tribute described in the previous paragraph. For simplicity we as-
sume that the prefixes are /16, as aggregated in the previous step
for the customer role autonomous systems. We then split this /16
into two /17 prefixes, and allocate each of these /17 prefixes to the
eBGP routers, in addition to the /16 prefix. As the /17 prefixes are
more specific than the /16 prefix, they will be preferred in the route
selection process run on the routers.

A summary of the prefixes announced by each eBGP router is
shown below in Listing 8.9.

as1r1 ["0.0.0.0/0", "11.0.0.20/30", "11.0.0.24/30", "11.0.0.28/30"]
as20r1 ["11.0.0.4/30", "11.0.0.16/30", "11.0.0.32/30", "20.1.1.0/24"]
as20r2 ["11.0.0.0/30", "20.1.1.0/24"]
as20r3 ["20.1.1.0/24"]
as30r1 ["11.0.0.8/30", "30.3.3.0/24"]
as40r1 ["11.0.0.12/30", "40.4.4.0/24"]
as100r1 ["100.1.0.0/16"]
as200r1 ["200.2.0.0/16"]
as300r1 ["200.1.0.0/16", "200.1.0.0/17"]
as300r2 ["200.1.0.0/16", "200.1.128.0/17"]

Listing 8.9: Prefixes announced by each eBGP router

The final step in this component is to map the prefixes advertised
by the customer eBGP routers onto their peers, to be used in creating
the prefix-lists on the provider eBGP router. For instance, on the
provider router as40r1, there is a prefix lists to only accept the customer
routes over the session from as300r2. To create this prefix-list on
as40r1 we need to map the customer prefixes onto the node, to then
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use in the compiler. A summary of these prefixes is shown below in
Listing 8.10.

as20r1 {200:["200.2.0.0/16"], 100:["100.1.0.0/16"]}
as20r2 {100:["100.1.0.0/16"]}
as30r1 {300:["200.1.0.0/17", "200.1.0.0/16"]}
as40r1 {300:["200.1.128.0/17", "200.1.0.0/16"]}

Listing 8.10: Customer prefixes for each eBGP provider router

applying policies The next step is to apply the eBGP policies.
This is shown in Listing H.37. For simplicity we first form sets
of nodes for each of the backbone, provider, and customer nodes.
This simplifies comparison logic. We then create a series of utility
functions to append a policy, or route-map in both inbound and
outbound directions, as well as to allow appending a route-map to
default-originate.

We then iterate over each backbone node, and look at the eBGP
peering sessions. If the session is to a provider, we set the default_originate
attribute to True, and append the acceptAny inbound prefix-list, and
the defaultOut outbound prefix-list. Next we iterate over the provider
nodes. If the session is to another provider, we add the default
originate route-map of dontUseMe, the outbound route-map of don-
tUseMe, and the outbound prefix-list of defaultOut. If the session is to
a customer, then we set the default_originate attribute to True, and add
the outbound prefix-list of defaultOut. We also specify the customer-
specific prefix-list based on the ASN. For instance the session from
as40r1 to as300r2 would have the as300In prefix-list. This prefix-list is
created in a later step.

Finally, we iterate over the customer nodes. If the session is to a
backbone node, we do nothing. If it is to a provider, then we look
at the bgp_policy attribute specified on the edge. This is from the
Network Whiteboard. In this example, if the bgp_policy is backup, then
we append the outbound route-map of metricOut, and the inbound
route-map of localPrefIn. This is applied on the link from the original
specification in the Network Whiteboard shown in Listing 8.4, where
the final value in the edge tuple indicates the bgp_policy attribute. The
link from as100r1 to as20r1 is designated as the backup. The effect of
the inbound and outbound routing policy is to make this route less
appealing to the routing decision process, so that the alternative link
via the primary path of as100r1 to as20r2 is preferred. This is con-
firmed in the trace routes shown in Section 8.4.8. A visualisation of
the eBGP Network View, showing the default originate label marked
on eBGP sessions, is shown in Figure 8.24.

258



8.4 complete netkit small-internet lab

true

true

true
true

true

true true

true

Figure 8.24: Visualisation of eBGP Network View, showing Default Origi-
nate label

creating prefix lists and route maps The final step in the
eBGP Design Function is to create the prefix lists and route-maps.
The code to create the prefix lists is shown in Listing H.38. We
first specify a library of the inbuilt prefix-lists, which are defaultOut,
defaultOk, defaultIn, defaultOut, and acceptAny. We then iterate over
each node in the eBGP Network View. We first check if the node
has any customer_asn_prefixes defined, and store this result for later
processing.

We then iterate over each eBGP session from the node, and look at
the prefix-lists defined on the session. For each prefix-list that exists
in the library discussed above, we apply the value from the library. If
the prefix-list is mineOutOnly, we form the prefix-list values from the
networks the node advertises over eBGP, from the networks attribute
on the node. Finally, we examine the customer_asn_prefixes value. If
there are any prefixes set, we create the appropriate prefix-list name,
and set the list of customer prefixes as the value. A visualisation of
the eBGP Network View showing the prefix lists on the eBGP sessions
is shown in Figure 8.25.

We then create the route-maps. The code to create the route-maps
is shown in Listing H.39. We again iterate over each eBGP node,
and then iterate over the eBGP sessions from the node. We create a
running list of the route-maps defined on each session, in order to
define these route-maps globally on the node.
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Figure 8.25: Visualisation of eBGP Network View, showing node Prefix Lists

We then iterate over the route-maps collected on the node. If the
route-map is dontUseMe, then we prepend the node’s asn attribute
three times. This is as-per the policies defined in Di Battista et al. [25],
and once again, an alternative definition could be incorporated and
activated through the use of policy attributes from the Network White-
board stage. If the route-map is localPrefIn, we set the local-preference
to 90. Finally, if the route-map is metricOut, we set the match-ip-
adddress to be the myAggregate access-list, and the metric to be 10. We
create the myAggregate access-list as the list of each of the infrastruc-
ture prefixes allocated to the asn attribute of the node. This could
also be expanded further to accommodate other policy requirements.
Finally, we set the route_maps and access_lists attributes on the node.
This concludes the Design Function steps for the eBGP Network View.

Routing Protocol Redistribution

The final step of the Design Function process is to set the redistribu-
tion of BGP into RIP. This is shown in Listing H.40, where we look
at the redistribute_bgp_to_igp set on the Network Whiteboard. If this
attribute is set to True, and the node has at least one eBGP peer, then
we set the redistribute_bgp attribute in the RIP Network View to True.
This is then used by the RIP component of the Quagga device com-
piler to set the appropriate redistribution command. This is a further
example of high-level policy expressed on the Network Whiteboard
being used to set low-level device configuration directives.
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8.4.6 Compilation

Netkit Platform Compiler

The Netkit Platform compiler is similar to that used in previous ex-
amples. It is shown in Listing H.43. The only significant difference
to previous examples is that we do not need to allocate interface
identifiers to the data interfaces, as these have been designated on
the Network Whiteboard. We do however allocate a tap interface,
and automatically assign this an interface identifier.

Quagga Device Compiler

The Quagga device compiler for this case study needs to be extended
to handle both the RIP routing protocol, and the BGP routing policy.
The code for this extended compiler is shown in Listing H.44.

The RIP component of the compiler maps two key pieces of infor-
mation: the networks to advertise, and the redistribution information.
The networks are obtained from the node in the rip overlay.. Similarly,
the redistribute_bgp and redistribute_connected values are obtained from
the node in the rip overlay, and were also specified using the RIP
Design Function.

The BGP component of the Quagga device compiler consists of the
iBGP and eBGP session handling code. The iBGP code uses the same
logic as previous examples, as only the iBGP overlay has differed
according to the Design Functions discussed in Section 8.4.5.

The eBGP component of the compiler follows similar logic to pre-
vious examples, with extensions to handle the routing policy. The in-
bound and outbound prefix lists and route maps, as well as the default
originate route map are mapped from the session in the ebgp overlay.
Similarly, the default_orginate boolean value is also mapped from the
session in the ebgp overlay. This demonstrates how the design of
the policy has been specified in the Design Functions discussed in
Section 8.4.5, with the compiler simply mapping the designated poli-
cies onto the appropriate session in the Intermediate Device Model.
The networks to be advertised over BGP are mapped as per previous
examples. Finally, the prefix lists, access lists, and route maps for the
node are mapped from the node in the ebgp overlay.
A utility function, process_route_maps in the Quagga device com-
piler has been created to assist with the creation of the route maps.
This is responsible for mapping the generic format expressed on the
node in the ebgp overlay into the format appropriate for the specific
target device (Quagga in this case). This allows the generic format to
be mapped into the device-specific format, by performing a transla-
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tion of the route-map syntax. This could be expanded in future by
extending the language for the generic expression of route-maps, as
discussed in Section 9.4.2.

Templates

The templates used for generating the device-specific syntax are largely
the same as in previous examples. The notable difference is the
addition of the RIP template, shown in Listing H.41, to generate the
ripd.conf output, and the extension of the BGP template to handle the
addition of routing policy. The extended BGP template is specified
in Listing H.42. This extended BGP template shows the iteration
over the route maps, prefix lists, and access lists as specified in the
Intermediate Device Model by the Quagga device compiler. This
applies for each session, as well as the specification of the route
maps, prefix lists, and access lists at the global level of the bgpd.conf
configuration file.

8.4.7 Example Intermediate Device Model and Device Configurations

An example of the Intermediate Device Model for the node as20r1
is shown below in Listing 8.11. This shows the global, interfaces, rip,
and bgp components. The global (hostname, ssh, etc) and interfaces
components are similar to previous examples.

The rip component shows the networks to be advertised over the
RIP routing protocol, and that connected prefixes are to be redis-
tributed into RIP. BGP learnt prefixes are not to be redistributed into
RIP.

The bgp component shows the ibgp neighbours as per previous
examples. The networks shows the prefixes to advertise over BGP, also
as per previous examples. We can see the ebgp neighbours shows the
new attributes for the default_originate boolean, and the lists for the
prefix list and route map names. We can also see the prefix lists and
route maps defined at the bgp level.

{
"asn": 20,
"bgp": {
"access_lists": {},
"ebgp_neighbors": [
{
"asn": 200, "default_originate": true,
"desc": "Router as200r1", "neigh_ip": "11.0.0.33",
"plIn": ["as200In"],
"plOut": ["defaultOut"],
"rmDo": [], "rmIn": [], "rmOut": []

}, {
"asn": 30, "default_originate": false,
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"desc": "Router as30r1", "neigh_ip": "11.0.0.18",
"plIn": [], "plOut": ["defaultOut"],
"rmDo": ["dontUseMe"], "rmIn": [],
"rmOut": ["dontUseMe"]

}, {
"asn": 100, "default_originate": true,
"desc": "Router as100r1", "neigh_ip": "11.0.0.5",
"plIn": ["as100In"], "plOut": ["defaultOut"],
"rmDo": [], "rmIn": [], "rmOut": []

}
],
"ibgp_neighbors": [
{"asn": 20, "desc": "Router as20r2",
"neigh_ip": "20.1.1.2"},

{"asn": 20, "desc": "Router as20r3",
"neigh_ip": "20.1.1.3"}

],
"networks": ["11.0.0.4/30", "11.0.0.16/30", "11.0.0.32/30", "20.1.1.0

/24"],
"prefix_lists": {
"as100In": [
["permit", "100.1.3.0/24"],
["permit", "100.1.2.0/24"]

],
"as200In": [
["permit", "200.2.0.0/16"]

],
"defaultOut": [
["permit", "0.0.0.0/0"]

]
},
"route_maps": { "dontUseMe": [

["set as-path prepend", "20 20 20"]
]

}
},
"hostname": "as20r1",
"interfaces": [
{"broadcast": "11.0.0.7", "id": "eth0",
"ip": "11.0.0.6", "netmask": "255.255.255.252"},

{"broadcast": "20.1.1.255", "id": "eth1",
"ip": "20.1.1.1", "netmask": "255.255.255.0"},

{"broadcast": "11.0.0.19", "id": "eth2",
"ip": "11.0.0.17", "netmask": "255.255.255.252"},

{"broadcast": "11.0.0.35", "id": "eth3",
"ip": "11.0.0.34", "netmask": "255.255.255.252"},

{"broadcast": "172.16.255.255", "id": "eth4",
"ip": "172.16.0.8", "netmask": "255.255.0.0"}

],
"rip": {
"networks": ["20.1.1.0/24"],
"redistribute_bgp": false,
"redistribute_connected": true

},
"ssh": {"use_key": false},
"zebra": {"password": "zebra"}

}

Listing 8.11: Intermediate Device Model for as20r1

The generated configuration files are shown below for RIP as ripd.conf
in Listing 8.12 and BGP as bgp.conf in Listing 8.13. The RIP config-
uration shows the network prefixes advertised, and the redistribute
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commands. The BGP configuration shows the BGP sessions with the
route maps, default originate, and prefix lists set, as per the Design
Functions discussed in Section 8.4.5. It also shows the specification
of the prefix lists and route maps.
!
!
hostname ripd
password zebra
!
router rip
redistribute connected
network 20.1.1.0/24
!
log file /var/log/zebra/ripd.log

Listing 8.12: Generated ripd.conf configuration file for as20r1

!
hostname bgpd
password zebra
enable password zebra
!
router bgp 20
network 11.0.0.4/30
network 11.0.0.16/30
network 11.0.0.32/30
network 20.1.1.0/24
!
neighbor 20.1.1.2 remote-as 20
neighbor 20.1.1.2 description Router as20r2 (iBGP)
!
neighbor 20.1.1.3 remote-as 20
neighbor 20.1.1.3 description Router as20r3 (iBGP)
!
!
neighbor 11.0.0.33 remote-as 200
neighbor 11.0.0.33 description Router as200r1 (eBGP)
neighbor 11.0.0.33 default-originate
neighbor 11.0.0.33 prefix-list defaultOut out
neighbor 11.0.0.33 prefix-list as200In in
!
neighbor 11.0.0.18 remote-as 30
neighbor 11.0.0.18 description Router as30r1 (eBGP)
neighbor 11.0.0.18 prefix-list defaultOut out
neighbor 11.0.0.18 default-originate route-map dontUseMe
neighbor 11.0.0.18 route-map dontUseMe out
!
neighbor 11.0.0.5 remote-as 100
neighbor 11.0.0.5 description Router as100r1 (eBGP)
neighbor 11.0.0.5 default-originate
neighbor 11.0.0.5 prefix-list defaultOut out
neighbor 11.0.0.5 prefix-list as100In in
!
!
ip prefix-list as100In permit 100.1.3.0/24
ip prefix-list as100In permit 100.1.2.0/24
!
ip prefix-list as200In permit 200.2.0.0/16
!
ip prefix-list defaultOut permit 0.0.0.0/0
!
!
route-map dontUseMe permit 10
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set as-path prepend 20 20 20
!
!
!
log file /var/log/zebra/bgpd.log
!
debug bgp
debug bgp events
debug bgp filters
debug bgp fsm
debug bgp keepalives
debug bgp updates
!

Listing 8.13: Generated bgpd.conf configuration file for as20r1

Finally, Listing H.45 shows a further example of a rendered bgpd.conf
configuration file for as30r1.

8.4.8 Simulation Results

as200r1

as100r1as100r2

as100r3

as20r2

as20r3

as20r1

as300r4

as300r2

as300r3

as300r1

as40r1

as1r1

as30r1

as20s1

as300s1

as40s1

as200s1 as30s1

as100s2

as100s1

Figure 8.26: Visualisation of traceroutes from as100r1 to eth1.as200r1,
eth1.as40r1 and eth1.as300r3

A trace from as100r3 to as40r1 is shown in Listing 8.4.8, and shows
the correct advertisement of BGP prefixes. We note that the path
taken flows up through the provider of AS20, and then through the
backbone of AS1, to reach AS40. We can also see the correct use of
the gateway router of as100r1 for AS100 on the first hop.

as100r3:~# traceroute eth1.as40r1
traceroute to eth1.as40r1 (40.4.4.1), 64 hops max, 40 byte packets
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1 eth2.as100r1 (100.1.0.1) 0 ms 0 ms 0 ms
2 eth0.as20r2 (11.0.0.2) 0 ms 0 ms 0 ms
3 eth1.as20r3 (20.1.1.3) 0 ms 0 ms 0 ms
4 eth2.as1r1 (11.0.0.22) 1 ms 1 ms 0 ms
5 eth1.as40r1 (40.4.4.1) 1 ms 1 ms 1 ms

The trace from as100r3 to as200r1, shown in Listing 8.14, shows the
use of the primary path via as20r2 even though it would be shorter
via as20r1. This confirms the correct application of the BGP routing
policy to prefer the primary link over the backup link.
as100r3:~# traceroute eth1.as200r1
traceroute to eth1.as200r1 (200.2.0.1), 64 hops max, 40 byte packets
1 eth2.as100r1 (100.1.0.1) 0 ms 0 ms 0 ms
2 eth0.as20r2 (11.0.0.2) 0 ms 0 ms 0 ms
3 eth2.as20r1 (20.1.1.1) 1 ms 0 ms 0 ms
4 eth1.as200r1 (200.2.0.1) 1 ms 0 ms 0 ms

Listing 8.14: Traceroute from as100r3 to eth0.as200r1

The trace from as100r3 to eth1.as300r3 again shows the preference
of the primary link from as100r1 to as20r1 over the path from as100r1
to as20r2. It also shows the preference of the provider-backbone-
provider path of AS20 to AS1 to AS30, over the provider-provider
path of as20r1 to as30r1. This is also due to the application of the
routing policy. Finally, we can see the route going through as300r1,
demonstrating the load sharing advertising the /17 prefix of 200.1.0.0/
17.
as100r3:~# traceroute eth1.as300r3
traceroute to eth1.as300r3 (200.1.0.2), 64 hops max, 40 byte packets
1 eth2.as100r1 (100.1.0.1) 13 ms 0 ms 0 ms
2 eth0.as20r2 (11.0.0.2) 0 ms 0 ms 0 ms
3 eth1.as20r3 (20.1.1.3) 0 ms 0 ms 0 ms
4 eth2.as1r1 (11.0.0.22) 1 ms 0 ms 0 ms
5 eth2.as30r1 (11.0.0.25) 1 ms 1 ms 1 ms
6 eth0.as300r1 (11.0.0.9) 1 ms 1 ms 1 ms
7 eth1.as300r3 (200.1.0.2) 1 ms 1 ms 1 ms

Listing 8.15: Traceroute from as100r3 to eth1.as300r3

These three traceroutes are visualised in Figure 8.26.
The traceroute from as100r3 to eth1.as300r3 at 200.1.0.2, and to eth0.as300r3

at 200.1.128.1 shows the load sharing advertisement working correctly
for the 200.1.0.0/17 and 200.1.128.0/17 prefixes. In the traceroute shown
in Listing 8.16, we can see the path to eth0.as300r3 is via AS40, in con-
trast to the path to eth1.as300r3 which was via AS30. This confirms the
load sharing policy is applied correctly. This traceroute is visualised
in Figure 8.27.
as100r3:~# traceroute eth0.as300r3
traceroute to eth0.as300r3 (200.1.128.1), 64 hops max, 40 byte packets
1 eth2.as100r1 (100.1.0.1) 0 ms 0 ms 0 ms
2 eth0.as20r2 (11.0.0.2) 0 ms 0 ms 0 ms
3 eth1.as20r3 (20.1.1.3) 0 ms 0 ms 0 ms
4 eth2.as1r1 (11.0.0.22) 0 ms 1 ms 0 ms
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Figure 8.27: Visualisation of traceroute from as100r1 to eth0.as300r3

5 eth2.as40r1 (11.0.0.29) 1 ms 1 ms 1 ms
6 eth0.as300r2 (11.0.0.13) 1 ms 1 ms 1 ms
7 eth0.as300r4 (200.1.64.2) 1 ms 1 ms 1 ms
8 eth0.as300r3 (200.1.128.1) 1 ms 1 ms 1 ms

Listing 8.16: Traceroute from as100r3 to eth0.as300r3

We now discuss more detailed diagnostic output from the show ip
route and show ip bgp commands from the zebra and bgpd processes.

The route table for as1r1, shown in Listing H.3.5 shows the prefixes
learnt over ebgp and the peer which announces them.

The route table for as20r1 shown in Listing H.3.5 shows the default
route to 0.0.0.0/0 via 11.0.0.22 (as1r1), which is via 20.1.1.3 (as20r3).
Thus the default route is to as1r1, announced from as20r3. The point-
to-point inter-AS routes of 11.0.0.0/30 and 11.0.0..20/30 are advertised
over RIP. There are a number of directly connected point-to-point
inter-AS routes of 11.0.0.4/30 and 11.0.0.32/30 and 11.0.0.16/30. The
network for AS200 of 200.2.0./16 is announced via 11.0.0.33 (as200r1).
Finally, the network of 100.1.0.0/16 is reached via 11.0.0.1 (eth0 of
as100r1) via 20.1.1.2 (as20r2). This confirms the routing policy to
prefer reaching AS100 through as20r2 vs the more direct route of
as20r1. This is due to the routing policies applied.

In Listing 8.17 we can see the BGP table for as1r1. This shows the
next hop to each network advertised, and the path. We can see some
networks, such as 200.2.0.0/16 is reached via 11.0.0.21 (as20r3), and
goes through AS 20 then AS 200. We can also see multiple paths, such
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as to 200.1.0.0/16 which is advertised by both as300r1 and as300r2.
This prefix can be reached via 11.0.0.29 (as40r1) over the AS path of
40 then 300, or via 11.0.0.25 (as30r1) over the AS path of 30 then 300.

bgpd# sh ip bgp
BGP table version is 0, local router ID is 11.0.0.22
Status codes: s suppressed, d damped, h history, * valid, > best, i -

internal,
r RIB-failure, S Stale, R Removed

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

*> 0.0.0.0 0.0.0.0 0 32768 i

*> 11.0.0.0/30 11.0.0.21 0 20 i

*> 11.0.0.4/30 11.0.0.21 0 20 i

*> 11.0.0.8/30 11.0.0.25 0 0 30 i

*> 11.0.0.12/30 11.0.0.29 0 0 40 i

*> 11.0.0.16/30 11.0.0.21 0 20 i

*> 11.0.0.20/30 0.0.0.0 0 32768 i

*> 11.0.0.24/30 0.0.0.0 0 32768 i

*> 11.0.0.28/30 0.0.0.0 0 32768 i

*> 11.0.0.32/30 11.0.0.21 0 20 i

*> 20.1.1.0/24 11.0.0.21 0 0 20 i

*> 30.3.3.0/24 11.0.0.25 0 0 30 i

*> 40.4.4.0/24 11.0.0.29 0 0 40 i

*> 100.1.0.0/16 11.0.0.21 0 20 100 i

* 200.1.0.0/16 11.0.0.29 0 40 300 i

*> 11.0.0.25 0 30 300 i

*> 200.1.0.0/17 11.0.0.25 0 30 300 i

*> 200.1.128.0/17 11.0.0.29 0 40 300 i

*> 200.2.0.0/16 11.0.0.21 0 20 200 i

Total number of prefixes 18

Listing 8.17: show ip bgp output for as1r1

Listing H.3.5 shows the BGP table for as30r1.
The routing table for as300r1 is shown in Listing H.3.5. It shows

the directly connected and internal routes announced via RIP. The
default route to 0.0.0.0/0 is reached through 11.0.0.10, which is as30r1.

The BGP table for as100r1 is shown in Listing 8.18, and shows the
local-preference policy influencing the path to 11.0.0.6 (as20r1). This
is setting the Local Preference value (shown as LocPrf) to 90.

bgpd# show ip bgp
BGP table version is 0, local router ID is 100.1.0.5
Status codes: s suppressed, d damped, h history, * valid, > best, i -

internal,
r RIB-failure, S Stale, R Removed

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

* 0.0.0.0 11.0.0.6 90 0 20 i

*> 11.0.0.2 0 20 i

*> 100.1.0.0/16 0.0.0.0 0 32768 i

Listing 8.18: show ip bgp output for as100r1

In the BGP table for as20r1, shown in Listing H.3.5, we can see the
pre-pended AS path with the extra 30 values in the Path column.

268



8.4 complete netkit small-internet lab

Finally, we can see the default route of 0.0.0.0/0 announced over
RIP (not iBGP) for the route tables of as300r3 shown in Listing 8.19

and as300r4 shown in Listing H.3.5.

as300r3# sh ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

I - ISIS, B - BGP, > - selected route, * - FIB route

R>* 0.0.0.0/0 [120/2] via 200.1.0.1, eth1, 00:24:07
C>* 127.0.0.0/8 is directly connected, lo
C>* 200.1.0.0/18 is directly connected, eth1
R>* 200.1.64.0/18 [120/2] via 200.1.128.2, eth0, 00:24:13
C>* 200.1.128.0/17 is directly connected, eth0

Listing 8.19: show ip route output for as300r3

These diagnostic commands demonstrate the configurations gen-
erated using our approach from the Network Whiteboard high-level
description meet the configuration and policy objectives of Di Battista
et al. [25].

8.4.9 Conclusion

In this case study we have shown how we can build upon the previ-
ous Simplified Small Internet lab, and accurately reproduce the Full
Small Internet Lab described in Di Battista et al. [25]. This provides
a more realistic case study, and demonstrates how the framework is
able to handle these requirements.
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8.5 vlan topology

8.5.1 Introduction

In this case study, we focus on the configuration of a Layer 2 Man-
aged Switch topology, with the use of VLAN tags. We reproduce
the theoretical example outlined in Section 5.7.2 to demonstrate how
our approach can be applied to generate switch configurations for a
campus or enterprise environment. This complements the previous
examples which are focused on a wide-area-network environment.

As the Netkit simulation environment does not support dedicated
managed switches, we generate configurations that can be on the
Cisco IOSv and IOSvL2 virtual machine images. These virtual ma-
chines run router and managed switch operating systems, respec-
tively. We run these on the Cisco VIRL simulation platform, described
in [79].

This case-study affords us with an opportunity to demonstrate
how the system can be used to generate configurations for routers
of a different network operating system (IOS instead of Quagga),
and to generate configurations for managed switches. It also allows
us to demonstrate how the underlying framework can be applied
to a different simulation platform by using the Platform Compiler
approach discussed in Section 6.3.2.

We note that our Design Functions, such as for the routing proto-
cols, do not need to be adapted from those used to generate the Ab-
stract Network Models used in the previous case studies. The Design
Functions in the previous case studies were designed for the Quagga
routing platform, but can be applied, without modification, for the
Cisco IOSv platform. This demonstrates the vendor independence of
the Abstract Network Model and Design Function approach, which
describe the declared network functionality, independent of the low-
level device-specific implementation details.

8.5.2 Methodology

The methodology used to implement and verify this case study is
shown in Figure 8.28. We add a VLAN Design Function to cater for
the managed switches and their VLAN attributes. The remainder
of the Design Functions are unmodified from previous case studies.
We do not configure iBGP or eBGP in this topology, so these Design
Functions have been removed.
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We simulate this topology on the VIRL platform using the IOSv
router and IOSvL2 managed switch. We therefore replace the Netkit
Platform Compiler with a VIRL Platform Compiler, and the Quagga
Device Compiler with an IOSv Router Device Compiler and IOSvL2

Switch Device Compiler. The VIRL Platform Compiler is responsible
for selecting the correct Device Compiler to use based on the device
specification on the Network Whiteboard. To generate configurations
for these devices we provide a IOSv Router Device Template and
IOSvL2 Switch Device Template, which are assembled to produce the
device configurations. The VIRL Platform uses a single XML file as its
input, so the Platform Assembler has been extended to first use the
Intermediate Platform Model and VIRL XML Template to generate
the simulated topology specification, and then to insert the device
configurations.

The final VIRL XML file is simulated on the VIRL Simulation plat-
form. To verify this case study we use the traceroute as per pre-
vious case studies, and the show vlan command on the managed
switches to verify the switching configuration. We provide a detailed
analysis of the traceroute output to confirm the correct configura-
tion of the VLANs on the managed switches, and the OSPF routing
protocol on the routers.
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Figure 8.28: Configuration Generation and Verification methodology for
VLAN Case Study
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8.5.3 Network Whiteboard

The Network Whiteboard is created as a GraphML file, and then post-
processed. The GraphML file uses directed edges to annotate the
VLAN attributes on interfaces. The directed edges are used to mark
the source and destination VLANs, which are then mapped onto the
interfaces as they are created on the input overlay.

As this is the first case-study to use both routers and switches, we
create a list of the nodes which are to have the role of switch. We then
iterate across the nodes in the input overlay and mark them with the
device_type of switch or router if they are in this list of switches, or not,
respectively. These steps are displayed in Listing H.46.

We then explicitly create a dictionary of nodes and edges, as shown
in Listing H.47 and Listing H.48, respectively. These explicitly denote
the attributes to be set on the nodes, and the VLANs to set on the
interfaces. We use the convention of (src, dst, vlan) for the edge list,
and apply the vlan attribute to the interface of the dst node connected
to the edge. This is shown in Figure 8.29, where the vlan attribute is
displayed on the interface.
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Figure 8.29: Network Whiteboard for VLAN topology showing VLANs on
Interfaces.
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8.5.4 Design Functions

Physical Network View

The next step is to create the physical network view. This step is per-
formed like previous Design Functions, where the nodes and edges
are added from the input overlay. Once again, as the edges only
denote physical connectivity, we do not need to use any filtering
functions. This again demonstrates the versatility of our generic ap-
proach to network design. The physical Design Function is shown in
Listing H.49, and a visualisation of the result is shown in Figure 8.30.
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bc0

bc2

Figure 8.30: Physical Network View for VLAN topology.

VLAN Network View

The next step is to construct the vlan Network View. This differs
to previous workflows for router-only topologies. We construct this
Network View following the theoretical approach described in Sec-
tion 5.7.2. This vlan Network View is then used to construct the Layer
2 Network View. This demonstrates the ability of our approach to be
adapted to different design approaches and requirements, without
requiring modification of the latter Design Functions.

The first step in construction the vlan Network View is to add the
nodes from the physical Network View, which are the routers and the
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switches, and then to add the edges representing physical connectivity.
This is shown in Listing H.50.

aggregate switches We then define the aggregate_nodes func-
tion as an example of the merge High-Level Primitive described in
Algorithm 5.4.3. This is shown in Listing H.51 .

We then copy the vlan interface attribute from the input overlay
using the copy_int_attr function, and merge the switches using the
aggregate_nodes function. The code this step is shown in List-
ing H.52, with the result shown in Figure 8.31. Here we can see
that two pseudo-nodes pn0 and pn1 have been created, from switches
sw4 and sw8, and sw10 and sw14 respectively.

We can also see that the retain parameter of vlan to the aggre-
gate_nodes function has retained the vlan attribute on the interfaces,
as shown in the figure. A cross-comparison against the vlan attribute
on the interfaces of the input overlay shown in Figure 8.29 confirms
this.
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Figure 8.31: Step 2 of VLAN Network View for VLAN topology.

create broadcast domains We then create the broadcast_domain
pseudo_nodes, corresponding to the broadcast domains which arise
from the vlan attributes set on the switches. The code for this step of
the Design Function is shown in Listing H.50.
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This is performed by iterating over each pseudo-node in the vlan
Network View. We then create a dictionary of the edges of the pseudo-
node corresponding to each vlan attribute. This is shown in List-
ing 8.20.

pn0 {"3": [(pn0, r7), (pn0, r6)], "2": [(pn0, r13), (pn0, r1), (pn0, r3),
(pn0, r9)], "4": [(pn0, r12), (pn0, r2)]}

pn1 {"3": [(pn1, r11), (pn1, r13)], "2": [(pn1, r9), (pn1, r6)]}

Listing 8.20: VLANs grouped by pseudo-node

We then iterate over each vlan for each pseudo-node. We first create
a new broadcast_domain pseudo-node. We then connect the destina-
tion interfaces of the original pseudo-node to the newly created vlan
pseudo-node. We also set the x and y co-ordinate attributes for the
vlan pseudo-node to be the average of the nodes to which it connects,
for the visualisation.

Finally, we then remove the original pseudo-node from the Net-
work View. The result of this step, defined in Listing H.53, is shown
in Figure 8.32.
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Figure 8.32: Step 3 of VLAN Network View for VLAN topology.

VLAN Switches Network View

The next step is to create the switches Network View, as shown in
Listing H.54. This Network View is used to represent the trunking
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interfaces of the switches, and the Spanning Tree Protocol configura-
tion.

This Network View is constructed by adding only the switch nodes
from the physical Network View. We then add the edges from the
physical Network View, which only adds the edges corresponding
to the nodes which exist in the switches Network View, (the switch
nodes).

We again use the copy_int_attr function to copy across the vlan
attribute on the interfaces, from the input overlay. As the only edges
in this Network View are between switches connected in the physical
Network View, we can simply iterate across the edges in this Network
View, and mark both the source and destination interfaces of the edge
to be trunking interfaces, by setting the trunking attribute to true.

For the configuration of Spanning Tree Protocol, we also iterate
over each connected subgraph, and record the set of all vlan attributes
occurring within that subgraph. In this example, we have two con-
nected subgraphs: one for sw4 and sw8, and the other for sw10 and
sw14. For the first subgraph, the vlan attributes set are 2, 3, and 4. For
the second subgraph, the vlan attributes set are 2 and 3. These are
recorded onto the switches in the subgraph.

The result of this step is shown in Figure 8.33, where the node
labels show the VLANs used in the connected subgraph, and the
interface labels show the trunking boolean.

Layer 2 Network View

The Layer 2 Network View is created from the vlan Network View.
This differs to the previous case studies, where the Layer 2 Network
View was constructed from the physical Network View.

Other than this difference, the remainder of the Layer 2 Design
Function is as per previous case studies. As shown in Listing H.55,
broadcast domain nodes are retained as-is from the Layer 2 Network
View. Any point-to-point links between layer 3 devices are split with
a broadcast domain. As there are no router-to-router connections in
this topology, the Layer 2 Network View, shown in Figure 8.34, looks
the same as the final result of the vlans Network View previously
shown in Figure 8.32. In the case that the topology contained both
switches and point-to-point links, the Layer 2 Design Function could
accommodate for both.

277



8.5 vlan topology

3,2

3,2,4 3,2,4

3,2

3,2,4 true

true

true

true

true true

Figure 8.33: Switches Network View of VLAN topology. Node labels show
VLANs for the Spanning Tree Protocol, and interface labels
show trunking state.
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Figure 8.34: Layer 2 Network View for VLAN topology.
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IP Address Network View

The IP Address Network View is constructed as shown in Listing H.57.
This Design Function follows the same logic as for the Simplified
Small Internet Example.

The result of the IP Address allocations are shown in Figure 8.35,
where the broadcast domain pseudo-nodes show the subnet allocated,
and the interfaces show the IP Address allocated.
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Figure 8.35: IP Address Network View for VLAN topology.

Layer 2 Connectivity Network View

The Layer 2 Connectivity Design Functions is shown in Listing H.56.
This is the same as in previous case studies, and simply applies
the explode function to the broadcast domain nodes added from the
Layer 2 Network View. The result of this Design Function is shown in
Figure 8.36.

We note that even though the Layer 2 Topology is created through
the use of VLANs, we can apply the same Layer 2 Connectivity De-
sign Function as in previous cases. This illustrates the power of the
separation of concerns in our approach.
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Figure 8.36: Layer 2 Connectivity Network View for VLAN topology.

OSPF Network View

The final Design Function in this case study is to create the OSPF
Network View. The code for this example is shown in Listing H.58.
This code is the same as that of the Small Internet case study, once
again illustrating the modularity of our approach. A visualisation of
the result of this Design Function is shown in Figure 8.37.

BGP Network View

We do not configure either iBGP or eBGP for this example. If required,
these protocols could be configured by following the same approach
discussed in previous case studies.
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Figure 8.37: OSPF Network View for VLAN topology.

8.5.5 Compilation

Netkit doesn’t easily provide for managed switches, so instead we
use the Cisco VIRL platform [79] for this case study. This requires
compiling for IOSv router, instead of the Quagga router, and creating
a new device compiler for the IOSvL2 switch. This also allows us
to demonstrate how our approach can be easily adapted to both a
different simulation platform, and to a different set of target device
syntaxes. We will also show the packaging of the device configura-
tions into the VIRL XML topology specification file.

VIRL Platform Compiler

The structure of the .virl XML topology file is based on the example
file from [103], and has been modified to this specific scenario. The
.virl file used contains the nodes, interfaces, and connections. We then
insert the configurations generated using the compilation process into
the nodes.

The VIRL platform compiler is responsible for allocating the in-
terface identifiers. This is done using one of two utility functions,
assign_router_interface_ids or assign_switch_interface_ids de-
pending on whether the device is a router or a switch. These allo-
cations are shown in Figure 8.38. The platform compiler also gen-

281



8.5 vlan topology

r11sw10

r13r12 sw14

r1

r9

r3

r2

sw5sw4

r7

r6

sw8

0/10/11/00/1

0/2

0/2

0/3

0/1

0/1

0/1

0/2 0/1

0/1

0/2

0/1

0/1

0/21/0

0/1 0/2

0/1

0/1

0/20/3 0/3 0/2

1/0

1/1

0/1 0/3

Figure 8.38: Physical Network View for VLAN topology with interface
names allocated by the Platform Compiler. The GigabitEthernet
prefix has been omitted from interface names.

erates the Intermediate Device Model using either the IOSv Router
Compiler or the IOSvL2 Switch Compiler. These are discussed in
Figure 8.5.5 and 8.5.5 respectively. Finally, the platform compiler
assigns the appropriate render template to use depending on the
device type. The templates are discussed in 8.5.5. The code for the
VIRL Platform Compiler is shown in Listing H.59.

IOSv Router Compiler

The IOSv Router Compiler follows similar logic to the Quagga device
compiler discussed in previous case studies. The code is shown in
Listing H.60. For this case study we do not configure BGP, so this
function is omitted from the IOSv Router Compiler. An example
Intermediate Device Model, for router r9, is shown in Listing 8.21,
including the interfaces and OSPF networks.

{
"asn": 1,
"hostname": "r9",
"interfaces": [
{"id": "GigabitEthernet0/1", "broadcast": "192.168.0.159",
"ip": "192.168.0.130", "netmask": "255.255.255.224",
"ospf_cost": 1, "physical": true},
{"id": "GigabitEthernet0/2", "broadcast": "192.168.0.63",
"ip": "192.168.0.35", "netmask": "255.255.255.224",
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"ospf_cost": 1, "physical": true},
{"id": "Loopback0", "broadcast": null,
"ip": "172.16.0.6", "netmask": "255.255.255.255", "physical": false}

],
"ospf": {
"networks": [
{"area": 0, "hostmask": "0.0.0.31", "prefix": "192.168.0.128"},
{"area": 0, "hostmask": "0.0.0.31", "prefix": "192.168.0.32"},
{"area": 0, "hostmask": "0.0.0.0", "prefix": "172.16.0.6"}
],
"process_id": 1
}
}

Listing 8.21: Intermediate Device Model for r9

The generated configuration for router r9 is shown in Listing 8.22.
!
hostname r9
boot-start-marker
boot-end-marker
!
no aaa new-model
!
ip cef
!
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
no service config
enable password cisco
ip classless
ip subnet-zero
no ip domain lookup
line vty 0 4
transport input ssh telnet
exec-timeout 720 0
password cisco
login
line con 0
password cisco
!
interface GigabitEthernet0/0
description OOB Management
! Configured on launch
no ip address
duplex auto
speed auto
no shutdown

!
interface GigabitEthernet0/1
ip address 192.168.0.130 255.255.255.224
duplex auto
speed auto
no shutdown

!
interface GigabitEthernet0/2
ip address 192.168.0.35 255.255.255.224
duplex auto
speed auto
no shutdown

!
interface Loopback0
ip address 172.16.0.6 255.255.255.255

!
router ospf 1
log-adjacency-changes
passive-interface Loopback0
network 192.168.0.128 0.0.0.31 area 0
network 192.168.0.32 0.0.0.31 area 0
network 172.16.0.6 0.0.0.0 area 0

!
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end

Listing 8.22: IOSv router configuration for r9

IOSvL2 Switch Compiler

The IOSvL2 Switch Compiler is shown in Listing H.60. It consists
of the interfaces and vlans functions. The interfaces function
is responsible for mapping the interface identifier from the physical
Network View, the trunking attribute from the switches Network View,
and the vlan attribute from the vlan Network View. This demonstrates
how multiple Network Views can be combined in a device compiler.
The vlans function is responsible for mapping the list of all VLANs
set on the node, from the switches Network View. This set of VLANs
is specified from the VLAN Switches Design Function.

An example Intermediate Device Model, for switch sw4, is shown
in Listing 8.23, showing the interfaces configuration, including the
trunking and vlan attributes. The list of VLANs to configure on the
device is shown as the global vlans attribute.

{
"asn": 1,
"hostname": "sw4",
"interfaces": [
{"id": "GigabitEthernet0/1", "trunking": false, "vlan": "2"},
{"id": "GigabitEthernet0/2", "trunking": false, "vlan": "2"},
{"id": "GigabitEthernet0/3", "trunking": true, "vlan": null},
{"id": "GigabitEthernet1/0", "trunking": true, "vlan": null}
],
"vlans": ["2", "3", "4"]
}

Listing 8.23: Intermediate Device Model for sw4

The generated configuration for switch sw9 is shown in Listing 8.24.
!
version 15.2
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
service compress-config
no service config
enable password cisco
ip classless
ip subnet-zero
no ip domain lookup
!
line vty 0 4
transport input ssh telnet
exec-timeout 720 0
password cisco
login
!
line con 0
password cisco
!
hostname sw4
!
boot-start-marker
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boot-end-marker
!
no aaa new-model
!
ip cef
no ipv6 cef
!
!
spanning-tree mode pvst
spanning-tree extend system-id
!
vlan internal allocation policy ascending
!
vtp domain test.lab
vtp mode transparent
vlan 3
vlan 2
vlan 4
!
interface Loopback0
description Loopback

!
interface GigabitEthernet0/0
description Mapped to Vlan1 for management
! Configured on launch
switchport mode access
no shutdown

!
interface GigabitEthernet0/1
switchport mode access
switchport access vlan 2
no shutdown

!
interface GigabitEthernet0/2
switchport mode access
switchport access vlan 2
no shutdown

!
interface GigabitEthernet0/3
switchport trunk encapsulation dot1q
switchport mode trunk
no shutdown

!
interface GigabitEthernet1/0
switchport trunk encapsulation dot1q
switchport mode trunk
no shutdown

!
interface Vlan1
description OOB Management
! Configured on launch
no ip address

!
ip forward-protocol nd
!
no ip http server
no ip http secure-server
!
control-plane
!
end

Listing 8.24: IOSvL2 Switch configuration for sw4
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Templates

The template for the IOSv router is specified in Listing H.62, and
for the IOSvL2 Switch is specified in Listing H.63. These follow the
same general approach as previous templates, with the addition of
the OOB (out-of-band) management interfaces hard-coded into the
template for simplicity.

Packaging

The configuration files are generated using the same approach as
previous case studies. However, instead of being inserted into a .tar.gz
archive, the generate configurations are packaged into an XML file as
required by the VIRL platform. The code to do this packaging step is
shown in Listing H.64.

Once this step has been completed, the final VIRL XML file can be
launched on the VIRL simulation platform. In the next section we
show the results of this simulation step.

8.5.6 Simulation Results

The below results show that both the VLAN and routing configu-
rations have been correctly generated. They also that Spanning Tree
Protocol has been correctly setup to carry VLAN information between
connected managed switches, as per the trunking topology shown in
Figure 8.33.

Show VLAN from switches shown in Listing 8.25 and Listing H.65.
Routing tables shown in Listing H.66 and Listing H.67. The latter
mapped from IPs to interfaces is shown in Listing H.68.

sw4#show vlan

VLAN Name Status Ports
---- -------------------------------- ---------

-------------------------------
1 default active Gi0/0
2 VLAN0002 active Gi0/1, Gi0/2
3 VLAN0003 active
4 VLAN0004 active
1002 fddi-default act/unsup
1003 token-ring-default act/unsup
1004 fddinet-default act/unsup
1005 trnet-default act/unsup

Listing 8.25: Output of show vlan on sw4

Traceroute
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r11#traceroute 172.16.0.5 probe 1
Type escape sequence to abort.
Tracing the route to 172.16.0.5
VRF info: (vrf in name/id, vrf out name/id)
1 192.168.0.98 17 msec
2 192.168.0.35 13 msec
3 192.168.0.129 22 msec
4 192.168.0.2 40 msec

Listing 8.26: Output of traceroute from r11 to r7

A traceroute from r11 to r7 is shown in Listing 8.26, and visualised
in Figure 8.39.

r11

r13r12

r1

r9

r3

r2

r7

r6

Figure 8.39: Visualisation of traceroute from r11 to r7.

If we step through the interfaces in the traceroute output, shown
in Listing 8.26, and use Figure 8.38, we can see that the packet first
leaves GigE0/1.r11, and enters GigE0/1.sw1 on VLAN3.
GigE0/2.r13, GigE0/2.r9, GigE0/1.r6, GigE0/1.r7

The first hop is GigE0/2.r13, which is also on VLAN3. Therefore
the packet leaves GigE/2.sw10 and goes across the trunk link to GigE0/
2.sw14. It then leaves GigE/1.sw14 on VLAN3, and enters GigE0/2 on
r13. It then leaves GigE0/1 on r13 and enters GigE0/1.sw8 on VLAN2.

The next hop is GigE0/2.r9. Therefore it leaves GigE1/0 on sw8
which is on VLAN2. It then enters GigE0/2.r9. The next hop is GigE0/1
on r6. Therefore it leaves GigE0/1 on r9, and enters GigE1/0 on sw10
which is on VLAN2. It leaves GigE0/3 on sw10 which is on VLAN2,
and enters GigE0/1 on r6.
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The next hop is GigE0/1.r7. This is in VLAN3 of sw8. Therefore the
packet leaves GigE0/2 of r6 which is in VLAN3. It enters GigE0/3 of
sw5, and goes across the trunk link from GigE0/2 of sw5 to GigE0/3 of
sw4. It then goes across the trunk link from GiE1/0 of sw4 to GigE1/1
of sw8. It then leaves GigE0/3 of sw8 on VLAN3, and enters GigE0/1
of r7. The traceroute is to the loopback0 IP address of 172.16.0.5, which
the router r7 is announcing.

In list form this is GigE/1.r11, GigE/2.sw10, GigE/1.sw14, GigE/1.r13,
GigE1/0.sw8, GigE/1.r9, GigE/3.sw10, GigE/2.r6, GigE/2.sw5, GigE1/0.sw4,
GigE/3.sw8. A visualisation of this is shown in Figure 8.40.

r11sw10

r13r12 sw14

r1

r9

r3

r2

sw5sw4

r7

r6

sw8

Figure 8.40: Visualisation of full path inferred from traceroute from r11

to r7, showing switches. The result is plotted on the Physical
Network View.

8.5.7 Conclusion

In this case study we have shown how the system can be used to con-
figure an enterprise network, using managed switches and VLANs.
We have shown how the design function used in previous case studies
can be adapted to this environment, with minimal changes required
outside of the inherent changes required to support the VLAN con-
figuration.
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We have demonstrated how the system can be adapted to configure
routers running different network operating systems, and how can
be used to configure managed switches. We have also shown how
the platform compiler approach can be readily adapted to support
the management interface requirements, and topology description
formats of a different simulation platform.

Finally, we have shown that the output of router and switch operat-
ing system commands, and the retreat example, that our system has
been able to successfully configure the network that was expressed
on the Network Whiteboard.

We note that this system can readily be used to automate the con-
figuration of different topologies. For instance, devices can be placed
in different VLANs by simply changing the label in the Network
Whiteboard, and additional devices can be added to the Network
Whiteboard, with no change required to the design functions or com-
pilation process. This illustrates the declarative ability of our system
to capture high-level network design policy.
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8.6 large-scale example

8.6.1 Introduction

Figure 8.41: Geographic plot of NREN1400 network from Knight et al. [56]

Our final case study is a large-scale example. This demonstrates
how the system can be used to configure large networks. Configuring
networks of this size would be very time-consuming. However the
use of an automated compiler, can reduce the time taken to configure
such networks to seconds. Importantly, as we will discuss in future
chapters, the ability to quickly generate configurations for a given
input topology, lends itself well to variations for experimental what-
if analysis.

For this example, we will use a large-scale topology based on the
European academic research networks. This topology is constructed
using topologies from the Internet Topology Zoo [53], an online repos-
itory of network topologies.

Details of the construction of this topology are outlined in the
Technical Report of Knight et al. [56]. A summary is provided here.
Individual networks in the Internet Topology Zoo have been obtained
from network maps provided by network operators. These topologies
have been traced, to be represented in a graph format. Typically
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these topologies represent city-level connectivity. For this example
we make the assumption of one router per point-of-presence. This
could be expanded through the use of a system such as the graph
products [83] to expand out the connectivity based on a PoP template.

Individual networks in the Internet Topology Zoo from the Euro-
pean research networks are collated. Many topologies provide not
only the internal structure, but also information on interconnectivity
to other networks. As outlined in the technical report, this connectiv-
ity has been used, and combined with information collected through
system such as traceroutes, to infer the Internet network connectivity
of these research networks.

Table 8.2: Large-scale European NREN topology summary statistics

Network ASN Country Size Network ASN Country Size

ACOnet 1853 Austria 18 LITNET 2847 Lithuania 42

AMRES 2107 Serbia 28 Malta 12046 Malta 1

ARNES 2107 Slovenia 34 MARNet 5379 Macedonia 17

BASNET 21274 Belarus 6 NIIF 1955 Hungary 35

BELnet 2611 Belgium 22 PSNC 9112 Poland 27

BREN 6802 Bulgaria 34 RedIris 766 Spain 19

CARNet 2108 Croatia 41 RENAM 9199 Moldova 3

CESNET 2852 Czech Republic 45 RENATER 2200 France 38

CYNET 3268 Cyprus 24 RESTENA 2602 Luxembourg 15

DFN 680 Germany 51 RHnet 15474 Iceland 14

EENet 3221 Estonia 12 RoEduNet 2614 Romania 40

FCCN 1930 Portugal 23 SANET 2607 Slovakia 35

FUNET 8624 Finland 24 SigmaNet 5538 Latvia 68

GARR 137 Italy 44 SUNET 2603 Sweden 31

GEANT 20965 Europe 18 SURFnet 1103 Netherlands 50

GRNET 5408 Greece 34 SWITCH 559 Switzerland 30

HEAnet 1213 Ireland 7 ULAKBIM 1967 Turkey 79

IUCC 378 Israel 10 Uni-C 1835 Denmark 22

JANET 786 United Kingdom 29 Uninett 224 Norway 64

JSCC 3058 Russia 1 URAN 12687 Ukraine 19

The topology used in this example is summarised in Table 8.2.
There are a total of 1,154 devices, grouped into 40 Autonomous Sys-
tems. The autonomous system numbers of the networks have been
allocated using publicly available lists of autonomous system alloca-
tions.

This results in a model containing the individual devices, the links
within an AS, the links between the individual Autonomous Sys-
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tems, and annotation on the devices of the Autonomous System to
which they belong. This is stored in the GraphML format, which,
as discussed in the previous chapter, can be imported directly to
our implementation as a Network Whiteboard. This is shown in
Figure 8.41.

Special Considerations

There are two main aspects of the system that we need to bear in
mind with the larger topology. Due to the scale of the network being
modelled, manually allocating IP addresses would be challenging.
We therefore use a simple algorithm to automatically allocate IP ad-
dresses. For simplicity we allocate a class-full address block to each
network.

One of the biggest performance impacts in configuring this inter-
network model is in establishing the full-mesh iBGP connections within
each Autonomous System. Due to the size of each of the networks,
as shown in table Table 8.2 a full mesh of O(N2)/2 can result in over
3,000 iBGP sessions for a network of 79 devices, such as ULAKBIM in
Turkey. As we discussed in Chapter 5 this is a well-known problem in
scalability in real-world networks. Approaches to solve this include
the use of techniques such as confederations or route-reflectors. In
this section will discuss how an automated algorithm can be used
to choose the most central routers to use in a network for route
reflection. An alternative approach would be to set label on the
Network Whiteboard, for the network devices that we would like
to use as a route reflectors.

8.6.2 Methodology

The methodology used to implement and verify this case study is
shown in Figure 8.42. To cater for the large size of this network,
we extend the IP address Design Function to allocate larger address
blocks to each autonomous system. We also extend the iBGP Design
Function to configure a route-reflector hierarchy instead of a full-
mesh within each autonomous systems. We perform this by an algo-
rithmic allocation of the route-reflector roles. We then use the same
Netkit and Quagga compilers to measure the performance of our
toolchain for a large-scale network. We do not simulate the network
in Netkit, but instead compile for the C-BGP simulation platform.
This uses a single configuration file which we produce by extending
the C-BGP Platform Compiler to incorporate the Network Views of
the Abstract Network Model. We then provide a C-BGP Template
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which is used by the Template Assembler to produce the C-BGP
configuration file. This is loaded and run in the C-BGP Simulation.
To verify the correctness of the generated configuration, we use the
traceroute command, and then the C-BGP equivalents of the BGP
and routing table commands: bgp show rib * and node show rt *.
We then discuss the results of this collected information.

Configuration

CollectionSimulation

Design Functions

Network
Whiteboard

IP Address
Design Function

Layer 2 Conn.
Design Function

OSPF
Design Function

iBGP
Design Function

eBGP
Design Function

Layer 2
Design Function

Physical
Design Function

Quagga Device
Compiler

Template
AssemblerQuagga IDM

Quagga
Device Configs

Netkit Platform
Compiler

Netkit IHM

Netkit IPM
Platform 
Assembler
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Platform Config

Quagga 
TemplatesNetkit Template

C-BGP
Simulation

Abstract
Network Model
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C-BGP Platform
Compiler

C-BGP
Template

Platform 
Assembler

C-BGP
Platform ConfigC-BGP IPM

Visualisation

Visualisation
Server

Visualisation
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Figure 8.42: Configuration Generation and Verification methodology for
Large Scale Case Study Case Study

8.6.3 Network Whiteboard

The procedure for the Network Whiteboard is as follows. We first
load the source GraphML Listing H.69, add nodes to Network White-
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board Listing H.70, and add edges to Network Whiteboard Listing H.71.
This follows the same process as previous case studies. We then
normalise the node locations Listing H.72 in order to visualise the
nodes. This normalisation spaces the nodes based on a scaling fac-
tor, and allocates co-ordinates to nodes which may not have been
geo-located. These co-ordinates are based on an average of the co-
ordinates of the neighbours of the node based on the physical con-
nectivity. Aside from the larger topology and the location normal-
isation, the process is the same as for previous case studies which
had multiple autonomous systems, just that this topology has many
more autonomous systems than previous case studies such as the
Simplified Small Internet case study discussed in Section 8.3.

8.6.4 Design Functions

Physical Network View

The code to create the physical Network View is shown in Listing H.73.
This is the same as in previous case studies. The visualisation is
shown in Figure 8.43.
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Figure 8.43: Visualisation of subset of Physical Network View, showing the
asn attribute of each node
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Layer 2 Network View

The Layer 2 Network View described in Listing H.74, and Layer 2
Connectivity Network View described in Listing H.75 also follow the
same Design Function logic as previous case studies.

IP Addressing Network View

Despite the much larger size of the topology, we can still use the
same IP Address allocation logic used in previous case studies. As
shown in Listing H.76, we iterate over each autonomous system, and
allocate a /16 IP block for each ASN. We then iterate over each of the
nodes (for loopbacks) and broadcast domains (for infrastructure) and
assign the relevant IP address block. This shows the versatility of our
approach, even for large-scale scenarios.

OSPF Network View

The OSPF Design Function, shown in Listing H.77, also follows the
same approach as previous case studies, where connectivity is formed
based on the physical connectivity within an autonomous system.
As all links are point-to-point we use the Physical Network View
rather than creating the Layer 2 Connectivity Network View, which
would be identifical. An extract of the OSPF topology is shown in
Figure 8.44.
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Figure 8.44: Visualisation of OSPF Network View. For visual clarity, a subset
of autonomous systems is shown here.
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iBGP Network View

As discussed in the introduction, we consider a route-reflector hierar-
chy for the iBGP topology. An extract of the iBGP topology is shown
in Figure 8.45.
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Figure 8.45: Visualisation of iBGP Network View. Nodes allocated the role
of route-reflector have been highlighted in red. For visual
clarity, a subset of autonomous systems is shown here.

allocating ibgp roles The first step is to create the iBGP Net-
work View Listing H.78. We then use an automated algorithm to
algorithmically allocate iBGP Roles Listing H.79, based on the cen-
trality of the nodes within an autonomous system. This takes ad-
vantage of the underlying graph-based approach, and uses the be-
tweenness_centrality algorithm from NetworkX. An alternative
approach to allocate the roles could be substituted. This algorithm
provides a list of nodes sorted by their centrality. We then choose the
top third of most central nodes, and set their ibgp_role attribute to be
RR, implying they are to perform the role of route-reflector. The other
nodes are marked with the ibgp_role of Client as they will be clients of
the route-reflectors.
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creating ibgp sessions We then use these designated roles to
create the iBGP sessions. This follows a similar approach to creating
iBGP sessions in previous examples, with the key difference being
that we consider the ibgp_role of each node within the autonomous
system. Within each autonomous system, we create two filtered sets,
one for route-reflectors, and one for route-reflector clients. We then
form a list of tuples for each pairing of route-reflector and route-
reflector client nodes, and iterate over these pairs, adding an up ses-
sion from the client to the route-reflector, and a down session from the
route-reflector to the client. We also create over sessions between each
pair of route-reflectors. These session directions are marked using the
direction attribute on the session termination point, and is used in the
template to set the “route-reflector client” configuration directive, as
required. The code for the session creation is shown in Listing H.80,
and the code used to highlight the route reflectors in the visualisation
shown in Figure 8.45 is shown in Listing H.81.

eBGP Network View
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Figure 8.46: Subsection of eBGP Network View for NREN1400 topology. For
clarity, non-eBGP nodes have been removed, and graphically co-
incident eBGP nodes have been manually moved.

An extract of the eBGP Network View is shown in Figure 8.46. The
Design Function to create this Network View is shown in Listing H.82,
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and follows the same logic as previous case studies. Similarly, the
code to specify the address prefixes to advertise over eBGP is shown
in Listing H.83, and also follows the same logic as previous case
studies.

Example Analysis
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Figure 8.47: Example of paths highlighted on Physical Network View.

The visualisation in Figure 8.47 shows how the visualisation system
can be used with the NetworkX shortest-path algorithm to highlight
the shortest path between a given pair of nodes in the network. This
can be used for offline analysis, which could later be compared to
data collected from the running network. The code to produce these
paths and an example output is shown in Listing H.84 and List-
ing H.85 respectively.
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8.6.5 Netkit

The Netkit Platform Compiler is shown in Listing H.86 and follows
the same logic as previous case studies. The Quagga device com-
piler is shown in Listing H.87 and also follows the same logic as
in previous case studies. This demonstrates how the decoupling of
the network design process from the low-level device configurations
allows re-use of the compiler logic.

As shown in Listing 8.27, the system is able to generate the con-
figurations for the Netkit platform and the Quagga devices in un-
der ten seconds on a 2.2 GHz Intel Core i7 Retina MacBook Pro.
This produces a zip archive, which when extracted, contains 3,460

directories and 8,072 files. This demonstrates the scalability of the
system and approach for large topologies. Further refinements to
the reference implementation described in Chapter 7 may be able to
increase performance further.

$ sysctl -n machdep.cpu.brand_string
Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz
$ time python nren1400.py
python nren1400.py 8.30s user 0.18s system 99% cpu 8.528 total

Listing 8.27: Netkit Compilation Performance

Due to the size of the topology, this topology is not launched in
the Netkit environment. Instead we simulate the network using the
C-BGP software package, which we discuss in the next section.

8.6.6 C-BGP

Introduction

Due to the size of the network, we use this opportunity to demon-
strate how our framework can be used to generate configurations for
the C-BGP [88] simulation software. C-BGP simulates the behaviour
of routing protocols, rather than emulating the network operating sys-
tems like Netkit or VIRL. This allows for greater scalability, and can
be used as a step in a workflow, where a topology is first simulated,
and then emulated. This demonstrates the versatility of our approach:
the same Network Whiteboard can be compiled to different targets,
allowing a variety of options in a workflow.

The key difference to note in C-BGP is that nodes are identified
by an IP address, and IGP and BGP sessions are established to this
IP address, rather than to a physical interface such as eth0 or eth1.
For this example we will use the loopback interface of each device
as the identifier. C-BGP also allows for a full-mesh to be established
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in a single command. We use this option, instead of the iBGP route-
reflector hierarchy to simplify the configuration generation process.
The approach shown could be extended to use route-reflectors in C-
BGP if required. Additionally, the C-BGP configuration is expressed
in a single file. We use the Platform compiler to produce this file. We
do not require the use of a device compiler for this example.

C-BGP Platform Compiler

The compiler to produce this is shown in Listing H.88. It is based on
the C-BGP tutorial2, and the example configuration file3.

The first component of the compiler is to create the physical links.
This is grouped by each autonomous system, and describes the routers
and the links between them. We then define the inter_domain links,
which are the connections between different autonomous systems.
These are based on the Physical Network View, and make use of the
subgraph utility function to form the subgraph of each autonomous
system. This grouping makes the configuration file easier to read.

The third step is to define the IGP protocol configuration. We base
this on the OSPF Network View, again using the subgraph utility
function to group by each autonomous system.

We then configure the BGP protocol. This defines three pieces of
data: the routers which speak BGP, the peers of each BGP speaking
router, and the networks which the BGP router advertises. As noted
in the introduction, we use the full-mesh command to form a full-mesh
in each autonomous system. Therefore, the BGP speaking routers
to be configured are those that have peerings in the eBGP Network
View. We then iterate over each of these routers, and list their peer
routers. An example of the peers in the Intermediate Device Model
is shown in Listing 8.28. The prefixes to advertise are obtained from
the networks attribute of the node in the eBGP Network View.
"192.168.10.2": {
"ebgp": [{

"domain": 2852, "ip": "192.168.23.18",
"next_hop_self": true, "up": true

}, {
"domain": 20965, "ip": "192.168.38.14",
"next_hop_self": true, "up": true

}, {
"domain": 2607, "ip": "192.168.19.12",
"next_hop_self": true, "up": true

}
]

}

Listing 8.28: Extract of Intermediate Platform Model showing eBGP peers

2 http://c-bgp.sourceforge.net/tutorial.php
3 http://c-bgp.sourceforge.net/downloads/tutorial-simple.cli
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This Intermediate Platform Model is then rendered using the tem-
plate shown in Listing H.89. This template follows the example given
in the C-BGP tutorial. We can see the bgp domain full-mesh command
added to the BGP routers. We also add a static route for each eBGP
peering to allow the prefixes to be reached. An extract showing the
key parts of the output configuration generated is shown in List-
ing H.90. The total generated configuration is 7,658 lines in length,
demonstrating the value of an automated approach to configuration
generation.

Performance

As shown in Listing 8.29, the process of running the Design Functions,
the C-BGP Platform Compilation, and rendering the configuration
using the template is performed in under 6.5 seconds on a modern
MacBook Pro laptop.

$ sysctl -n machdep.cpu.brand_string
Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz
$ venv time python nren1400.py
python nren1400.py 6.35s user 0.16s system 98% cpu 6.606 total

Listing 8.29: C-BGP Compilation Performance

Simulation Results

Output from running the topology in the C-BGP simulation envi-
ronment is captured, with the output of the routing table shown in
Listing H.92, and the output of the BGP RIB shown in Listing H.91.

The result of a traceroute from London.JANET to Roznava.SANET
is shown in Listing 8.30, with the post-processed output shown in
Listing 8.31. The post-processed output shows the node and the
network to which it belongs for each hop of the traceroute output.

cbgp> net node 192.168.6.17 traceroute 192.168.19.21
1 192.168.38.18 (192.168.38.18) icmp error (time-exceeded)
2 192.168.38.9 (192.168.38.9) icmp error (time-exceeded)
3 192.168.38.14 (192.168.38.14) icmp error (time-exceeded)
4 192.168.19.24 (192.168.19.24) icmp error (time-exceeded)
5 192.168.19.23 (192.168.19.23) icmp error (time-exceeded)
6 192.168.19.29 (192.168.19.29) icmp error (time-exceeded)
7 192.168.19.6 (192.168.19.6) icmp error (time-exceeded)
8 192.168.19.17 (192.168.19.17) icmp error (time-exceeded)
9 192.168.19.11 (192.168.19.11) icmp error (time-exceeded)
10 192.168.19.3 (192.168.19.3) icmp error (time-exceeded)
11 192.168.19.21 (192.168.19.21) reply

Listing 8.30: traceroute from London.JANET to Roznava.SANET

cbgp> net node 192.168.6.17 traceroute 192.168.19.21
1 UK.GEANT (192.168.38.18) icmp error (time-exceeded)
2 DE.GEANT (192.168.38.9) icmp error (time-exceeded)
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3 AT.GEANT (192.168.38.14) icmp error (time-exceeded)
4 Bratislava.SANET (192.168.19.24) icmp error (time-exceeded)
5 Sala.SANET (192.168.19.23) icmp error (time-exceeded)
6 Nove_Zamky.SANET (192.168.19.29) icmp error (time-exceeded)
7 Levice.SANET (192.168.19.6) icmp error (time-exceeded)
8 Zvolen.SANET (192.168.19.17) icmp error (time-exceeded)
9 Lucenec.SANET (192.168.19.11) icmp error (time-exceeded)
10 R.Sobota.SANET (192.168.19.3) icmp error (time-exceeded)
11 Roznava.SANET (192.168.19.21) reply

Listing 8.31: Post-processed traceroute from London.JANET to
Roznava.SANET

We also show the BGP RIB for the DE node of the GEANT net-
work in Listing H.93. This shows the various prefixes learnt from
different peers. A post-processed result with the prefixes mapped
to the advertising network name, and host IPs mapped to their host-
name, is shown in Listing 8.32. A subsection of the Physical Network
View, showing the physical connectivity from the DE.GEANT node
is shown in Figure 8.48. The directly connected physical peers such
as BCE.RESTENA or FRA_680.DFN can be seen in the prefixes learnt.
The other prefixes are learnt from other GEANT nodes via iBGP.
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FR
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Petach_Tikva_GigaPoP

Moscow

NL

AT

DE

Figure 8.48: Subsection of Physical Network View showing connectivity
from DE.GEANT

cbgp> bgp router DE.GEANT show rib *
*> GARR IT.GEANT 0 4294967295 137 i

*> Uninett DK.GEANT 0 4294967295 2603 224 i

*> IUCC Petach_Tikva_GigaPoP.IUCC 0 4294967295 378 i

*> SWITCH CH.GEANT 0 4294967295 559 i

*> DFN FRA_680.DFN 0 4294967295 680 i

*> RedIris ES.GEANT 0 4294967295 766 i

*> JANET UK.GEANT 0 4294967295 786 i

*> SURFnet NL.GEANT 0 4294967295 1103 i

*> HEAnet UK.GEANT 0 4294967295 1213 i

*> Uni-C DK.GEANT 0 4294967295 2603 1835 i
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*> ACOnet AT.GEANT 0 4294967295 1853 i

*> FCCN UK.GEANT 0 4294967295 1930 i

*> NIIF HU.GEANT 0 4294967295 1955 i

*> ULAKBIM RO.GEANT 0 4294967295 1967 i

*> ARNES AT.GEANT 0 4294967295 2107 i

*> CARNet HU.GEANT 0 4294967295 2108 i

*> RENATER FR.GEANT 0 4294967295 2200 i

*> RESTENA BCE.RESTENA 0 4294967295 2602 i

*> SUNET DK.GEANT 0 4294967295 2603 i

*> SANET AT.GEANT 0 4294967295 2607 i

*> BELnet NL.GEANT 0 4294967295 2611 i

*> RoEduNet RO.GEANT 0 4294967295 2614 i

*> LITNET LT.GEANT 0 4294967295 2847 i

*> CESNET CZ_20965.GEANT 0 4294967295 2852 i

*> JSCC Moscow.JSCC 0 4294967295 3058 i

*> EENet EE.GEANT 0 4294967295 3221 i

*> CYNET GR.GEANT 0 4294967295 3268 i

*> MARNet BG.GEANT 0 4294967295 5379 i

*> GRNET GR.GEANT 0 4294967295 5408 i

*> SigmaNet LT.GEANT 0 4294967295 5538 i

*> BREN BG.GEANT 0 4294967295 6802 i

*> FUNET DK.GEANT 0 4294967295 2603 8624 i

*> PSNC PL.GEANT 0 4294967295 9112 i

*> RENAM RO.GEANT 0 4294967295 2614 9199 i

*> URAN PL.GEANT 0 4294967295 12687 i

*> AMRES HU.GEANT 0 4294967295 1955 13092 i

*> RHnet DK.GEANT 0 4294967295 2603 15474 i
i> GEANT DE.GEANT 0 0 null i

*> BASNET PL.GEANT 0 4294967295 21274 i

*> GARR IT.GEANT 0 4294967295 137 i

*> Uninett DK.GEANT 0 4294967295 2603 224 i

*> IUCC Petach_Tikva_GigaPoP.IUCC 0 4294967295 378 i

*> SWITCH CH.GEANT 0 4294967295 559 i

*> DFN FRA_680.DFN 0 4294967295 680 i

*> RedIris ES.GEANT 0 4294967295 766 i

*> JANET UK.GEANT 0 4294967295 786 i

*> SURFnet NL.GEANT 0 4294967295 1103 i

*> HEAnet UK.GEANT 0 4294967295 1213 i

*> Uni-C DK.GEANT 0 4294967295 2603 1835 i

*> ACOnet AT.GEANT 0 4294967295 1853 i

*> FCCN UK.GEANT 0 4294967295 1930 i

*> NIIF HU.GEANT 0 4294967295 1955 i

*> ULAKBIM RO.GEANT 0 4294967295 1967 i

*> ARNES AT.GEANT 0 4294967295 2107 i

*> CARNet HU.GEANT 0 4294967295 2108 i

*> RENATER FR.GEANT 0 4294967295 2200 i

*> RESTENA BCE.RESTENA 0 4294967295 2602 i

*> SUNET DK.GEANT 0 4294967295 2603 i

*> SANET AT.GEANT 0 4294967295 2607 i

*> BELnet NL.GEANT 0 4294967295 2611 i

*> RoEduNet RO.GEANT 0 4294967295 2614 i

*> LITNET LT.GEANT 0 4294967295 2847 i

*> CESNET CZ_20965.GEANT 0 4294967295 2852 i

*> JSCC Moscow.JSCC 0 4294967295 3058 i

*> EENet EE.GEANT 0 4294967295 3221 i

*> CYNET GR.GEANT 0 4294967295 3268 i

*> MARNet BG.GEANT 0 4294967295 5379 i

*> GRNET GR.GEANT 0 4294967295 5408 i

*> SigmaNet LT.GEANT 0 4294967295 5538 i

*> BREN BG.GEANT 0 4294967295 6802 i

*> FUNET DK.GEANT 0 4294967295 2603 8624 i

*> PSNC PL.GEANT 0 4294967295 9112 i

*> RENAM RO.GEANT 0 4294967295 2614 9199 i

*> Malta IT.GEANT 0 4294967295 12046 i

*> URAN PL.GEANT 0 4294967295 12687 i

*> AMRES HU.GEANT 0 4294967295 1955 13092 i

*> RHnet DK.GEANT 0 4294967295 2603 15474 i
i> GEANT DE.GEANT 0 0 null i

*> BASNET PL.GEANT 0 4294967295 21274 i

Listing 8.32: C-BGP bgp show rib result for DE.GEANT node. The first
column shows the network name for the prefix, and the second
column shows the router the prefix was learnt from.
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8.6.7 Conclusion

In this case study we have shown how our system is able to handle
large-scale topologies. We have also demonstrated how our system
can be adopted for the use of the C-BGP simulation platform. As we
will discuss in Section 9.5.2, the ability to target multiple platforms
from the same Network Whiteboard description can be used as part
of an engineering design and testing workflow.
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8.7 system adoption

8.7.1 Introduction

In this section we describe the use of the system in both research
and industry. Adoption by industry is an important validation for re-
search which focusses on an approach which is acceptable and usable
by a substantial number of network researchers and practitioners.

8.7.2 Use in Research

AutoNetkit was used to automate the deployment of the virtual net-
work setup for the Content Delivery Network emulation system pre-
sented as a demonstration at the SIGCOMM 2013 conference [85].
This involved extending the AutoNetkit platform to allow the config-
uration of Linux hosts representing HTTP servers (acting as traffic
sources) and end hosts (acting as traffic sinks).

8.7.3 Use in Industry

Junosphere

An earlier version of AutoNetkit was used to automatically generate
topologies for the Juniper Junosphere simulation environment [5].

VIRL

AutoNetkit has been used as a component of the VIRL platform, [79],
a commercial product from Cisco with approximately 10,000 [78]
users of the Personal Edition, with additional users in the Cisco Mod-
eling Labs enterprise version. This allows us the opportunity to
include feedback from real-world network practitioners regarding
the abstractions and transformations that we have presented in this
thesis.

extensions AutoNetkit has been extended in the VIRL platform
in a number of aspects. These demonstrate the flexibility of the
approach presented in this thesis. We provide an overview of these
extensions below.

The .virl XML topology format allows the description of a labelled
network topology, where nodes, interfaces, and the topology itself
can be labelled. This acts as a Network Whiteboard input to the

306



8.7 system adoption

configuration process. It also supports writing of the generated con-
figurations back to the .virl file.

The Design Functions have been extended to support the OSPFv2,
OSPFv3, RIP, IS-IS, EIGRP, iBGPv4, eBGPv4, iBGPv6, eBGPv6, MPLS
LDP, VRFs, and VPN protocols. The IP address allocation supports
both IPv4 and IPv6 addressing.

The Device Compilers have been extended to support a number
of different device operating systems, including the IOSv, CSR1000v,
IOS-XRv, and NX-OSv routers; the ASAv firewall; and the IOSvL2
managed switch. Linux operating systems are bootstrapped using
configurations generated for the cloud-init initialisation system.

The collection and data analysis framework has been extended to
collect a variety of diagnostic information from running network de-
vices, and form the appropriate Network Views. This allows the pro-
cessing and display of protocols such as OSPF, IS-IS, BGP, Spanning-
Tree and VLANs from a variety of device types, together with auto-
mated visualisation of traceroute results.

This demonstrates how the underlying open-source framework can
be extended to be reliably used in production for a variety of proto-
cols and platforms, for both configuration generation and data collec-
tion and analysis.

user feedback In this section we provide a number of quotes
regarding real-world users of AutoNetkit as part of the VIRL plat-
form. These offer insight into the value of a high-level approach to
automating the process of generating low-level device configurations.

In a 2016 tweet, Ethan Banks [33] writes:

Reading up on IS-IS today, as well as watching @CiscoVIRL
tutorial videos. AutoNetKit is nice. Building basic configs by
hand goes away. (Banks [33])

In a 2013 blog post Pepelnjak [24] reviews AutoNetkit in CML:

Having automatically generated initial configurations with IP
addresses and reasonably configured routing protocols is awe-
some. Whenever I wanted to do a quick test of a new IOS
feature in the past, I spent more time creating the initial router
configurations (or browsing through previously created topolo-
gies and configurations, trying to figure out which ones would
closely match my current requirements) than doing the actual
tests (I even wrote a Perl script to create the configurations).
(Pepelnjak [24])

Pepelnjak continues:
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The ability to create a topology on the fly and get a running
network in a few minutes is priceless. (Pepelnjak [24])

In a blog post in 2014, Burke [14] describes:

It is called Autonetkit. It takes a set of predefined variables and
injects them into the environment. I will give you a glimpse
of how I can cut down a massive amount of time configuring
a base environment. When learning a new feature within BGP
for example and you’re setting up GNS3 or another environ-
ment you can spend a lot of time setting up an environment.
There have been many times where I may have had 90 minutes
of study time. 25–30 minutes may have been thinking of a
topology or addressing scheme and configuring that. Whilst
not a hard task it is time that gets sucked away. Now with this
feature you can have the core infrastructure up and running
very quickly and focus on deploying BGP communities, MP-
BGP or working with advanced functions. (Burke [14])

Burke continues:

. . . it already has saved me 30 minutes per study sessions since
I picked it up. That was 25 minutes more time at the CLI work-
ing on technologies opposed to simply inputting addressing
(Burke [14])

In a forum post describing VIRL, Maker [65] writes:

Autonetkit. This is probably the key thing (that and layer2 and
ASA) that keeps me interested in VIRL. You can autoconfigure
your routing protocols. This is a huge time saver. I can put,
say, 9 iosv devices on a map and use the selector to grab 3 at
a time and say run EIGRP for these three and provide some
parameters, select another 3 and say I want OSPF for these
three, etc. Autonetkit is really the star of the show with VIRL.
(Maker [65])

In his 2016 book The VIRL Book, Wang [109] writes:

One of the best features that Cisco VIRL offers is the ability to
automatically configure basic IP addressing, L3 routing, OSPF,
BGP and VRFs on all the simulated nodes when they are first
launched. In other words, you have a "converged" network as
soon as the network is up. This feature is called AutoNetkit.
(Wang [109])

This feature is particuarly useful for network engineers who
want to test a configuration or new features in an IOS image.
It normally takes hours just to get a baseline network working,
running multi-protocolls, BGPs in a fairl complex environment.
With AutoNetkit, you can have a fully routed network up in
minutes. (Wang [109])
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8.7.4 Conclusion

This section has validated the first research question presented in
Section 3.2. We have made the proposed declarative high-level policy
representation and associated compilation steps available to research
and industry practitioners. As we have shown in this section, the
system has been able to be extended for use in research, and industry
feedback has demonstrated that network practitioners can readily
understand and recognise the benefits of the high-level policy rep-
resentation.

8.8 conclusion

In this chapter we have presented four case studies which validate
three key aspects of the approach presented in this thesis. Firstly,
we have reinforced the claim that the approach can generate correct
device configurations. Secondly, we have shown how the approach
can be extended to different network designs, emulation platforms,
and target devices. Finally, we have shown how the approach and
tooling is suitable for use in generating configurations for large-scale
networks.

In this chapter we have shown how our approach and toolchain
addresses Research Question 5: What are the scalability and extensibility
characteristics for the compilation of High-Level Network Configuration
Policy to device configurations in terms of network size and diversity of
network protocols and target devices?
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9
F U T U R E W O R K

9.1 introduction

In this section we provide a brief overview on possible future di-
rections which could be used to extend the approach presented in
this thesis. We present these grouped by the themes discussed in
Chapter 4, Chapter 5 and Chapter 6. We also discuss how the system
as a whole could be expanded. These expand on each of the Research
Questions we outlined in Chapter 3, covering declarative represen-
tations of High Level Network Policy, graph-based network config-
uration intermediate representations, the transformations of these,
expanding the configuration generation from the intermediate rep-
resentation, and increasing the scalability and demonstrating the ex-
pandability of the approach and toolchain presented in this thesis.

9.2 specification and representation using network views

9.2.1 Network Element Paths

The current Network Whiteboard and Network Views contain Net-
work Elements, Network Element Interfaces, and Network Element
Connections. This could be expanded by allowing the specification
and representation of Network Element Paths, as shown in Figure 9.1.
They can be defined based on Network Elements as shown in Fig-
ure 9.2 or with Network Element Interfaces as shown in Figure 9.3

Network Element Paths can be used to represent explicit paths
through the network, such as for traffic engineering, where traffic
must traverse a specific series of Network Elements and/or Network
Element Interfaces. Network Element Paths consist of the following:

1. A Network Element Path Source, either a source Network Ele-
ment, or an optional source egress Network Element Interface.
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2. A Network Element Path Destination, either a destination Net-
work Element, or an optional destination ingress Network Ele-
ment Interface (optional)

3. Zero or more Network Element Path Hops, where each Net-
work Path Hop consists of a Network Element. Optionally, a
Network Path Hop may include a Network Path Hop ingress
Network Element Interface and/or a Network Path Hop egress
Network Element Interface.

2
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8 9

1
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a

b

a
b

b

c

a b
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b
b

d
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c
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Figure 9.1: Example Network View showing a path through the Network
View, from Network Element 1 to Network Element 9 via
Network Elements 3, 6, and 7.

1 3 6 7 9

Figure 9.2: A Network Element Path specified using Network Elements.

3 6 7 91 aa da c a c a

Figure 9.3: A Network Element Path specified using Network Elements and
both Ingress and Egress Network Element Interfaces.

9.2.2 Label Sets and Network View Schema

We could formalise the approach of using labels. Currently labels
are free-form in that no restrictions are placed on their setting by the
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Design Functions. This could be refined by placing a schema on the
label keys. For instance label keys could be restricted by the role of a
Network Element, or its capabilities.

Network Element Capabilities are dictated by the target device
to which the Network Element corresponds. They are constrained
by the physical and logical capabilities of the target device. Some
devices may support some features that others may not. For instance
a modern router may allow for configuration of both IPv4 and IPv6,
whilst an older router may only support IPv4. Another example is
some routing protocols are only supported by certain vendors. For in-
stance EIGRP was for a long time a proprietary routing protocol only
available on Cisco devices. These constraints can also be captured
in the capabilities, which are shown in Figure 9.4. In the examples
provided in this thesis, we use a limited set of labels to indicate such
capabilities. This could be extended to provide a strict alphabet of
available labels depending on the Network Element.

Device

Router Switch Server

IPv4 IPv6 BGP OSPF

Figure 9.4: Network Element Capabilities

This could be extended further to introduce a schema-based ap-
proach like that discussed in the YANG work such as the “Yang Data
Model for OSPF Protocol” by Yeung et al. [111].

9.2.3 Higher Level Network Descriptions

We could extend the labelled graph-based Network Whiteboard fur-
ther by allowing a declarative grammar that is pre-processed with the
Network Whiteboard to allow even higher level expression of design
policy, or BGP policy. The Network Whiteboard then becomes an
intermediate representation, with a higher-level language allowing
description of business and network design policies which are then
translated to the Network Whiteboard, and then through the system,
as shown in Figure 9.5.
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Abstract 
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Intermediate 
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Device 
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Design
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Figure 9.5: Approach with a higher-level grammar used to construct the
Network Whiteboard.

9.3 network view transformation

9.3.1 Design Functions

IP Addressing

Enhanced IP
Design Function

Physical Network 
View

IP Address 
Network View

Layer 2 Network 
View

So far we have used the simplified IP addressing algorithm dis-
cussed in Section 5.6.3, where we allocate a fixed sized block to each
autonomous system for each of infrastruture and loopback addresses.
This was continued in the case studies in Chapter 8, where we allo-
cated a /24 IP block to each autonomous system. This was expanded
to a /16 for the Large-Scale case study in Section 8.6. For each point-
to-point broadcast domain Pseudo Network Element, we allocated /
30, which was then iterated over to allocate individual IP addreses to
the connected Network Element Interfaces. For the switches in the
Small Internet Complete case study in Section 8.4 we used the static
IP address allocation specific on the Network Whiteboard. Finally,
for the VLAN case study in Section 8.5 we allocated as /27 to each
broadcast domain Pseudo Network Element which arose from the
VLAN Network View. This was known in advance to be of sufficient
size given the topology.

However, these static allocations cannot be applied to larger topolo-
gies, or those with higher degree broadcast domains (a /27 allows
for 30 host IP addresses). For this we require a more flexible IP
allocation approach, which takes into account the degree of each
broadcast domain Pseudo Network Element. From this we can build
an IP addressing tree which determines the appropriate size block to
allocate.
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An example implementation of such an IPv4 allocation algorithm
in AutoNetkit can be seen in the ipv4.py1 module. This constructs
a tree for each autonomous system based on the degree of each
collision domain. An example for where loopbacks and infrastructure
addresses are allocated from the same address block is shown in
Figure 9.6, where a /27 block is allocated to the autonomous system,
and split into two /28 blocks. One of these blocks is broken into two
/29 blocks, with one allocated to a switch, and the other used for the
/32 loopback of a host. The other /29 is broken into /30 blocks, and
one is allocated to a point-to-point broadcast domain (arising from
a collision domain hence the cd_ prefix). For the other autonomous
system, the autonomous system is allocated a /28 prefix, which is
then allocated as /30 blocks as shown in Figure 9.7.
8/6/12 129.127.12.122:8000/ip.html

1/1129.127.12.122:8000/ip.html

10.0.0.0/27

10.0.0.0/28
(10.0.0.0/29 sw2.as1)

(10.0.0.8/29 loopback)

10.0.0.16/28 10.0.0.16/29 (10.0.0.16/30 cd_r2_r3)

Figure 9.6: IP Addressing tree for an example AS1.

10.1.0.0/28

10.1.0.0/29

(10.1.0.0/30 cd_r2_r3)

(10.1.0.4/30 sw4.2)

10.1.0.8/29

(10.1.0.8/30 loopback)

(10.1.0.12/30 cd_r3_r4)

Figure 9.7: IP Addressing tree for an example AS2.

Our approach to IP addressing here can also be extended to IPv6

addressing. A simplified IPv6 allocation allocation algorithm can be
seen in the ipv6

2 module.
For more advanced IP addressing allocation approaches, we refer

the reader to the work of Duerig et al. [26].
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ACL Design Function

ACL Policy 
Description

ACL Network 
View

IP Address 
Network View

Access Control Lists

We provide a brief overview using the framework to configure access
control lists, either on routers or on dedicated firewall devices. Access
control lists filter data plane connectivity based on sets of IP address
prefixes. Through the use of Design Functions, Network Elements,
and the prefixes on them, can be collated using selection operations
based on the labels on these elements. In the Network Whiteboard,
these enterprises could either be labelled with a label, or the egress
interface of the router or switch which connects to these devices,
could be Labelled. This label could then be using a query operation,
after the IP address allocation, to create a list of the prefixes which
belong according to these criteria. From this, a list can be created
on the Network Element which is to realise the access control list.
We provided a simple example of this approach in the formation of
prefix-lists in Section 8.4. We describe a more generalised approach
based on abstract syntax trees in Section 9.4.2.

Multiple IGPs

IS-IS Design Function

Physical Network 
View

IS-IS Network 
View

Layer 2 Network 
View

OSPF Design Function

EIGRP Design Function

OSPF Network 
View

EIGRP Network 
View

We also note, that this approach can be used with a preprocessor
step, to allocate a specific IGP to a specific autonomous system. This
preprocessor step, is given a mapping of autonomous system number
to the IGP label to set. It then maps the IGP value appropriate given
this mapping. This approach is discussed further in Chapter 8 in the
large-scale case study.

1 https://github.com/sk2/autonetkit/blob/thesis16/autonetkit/plugins/ipv4.py
2 https://github.com/sk2/autonetkit/blob/thesis16/autonetkit/plugins/ipv6.py
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Figure 9.8: Workflow for Redistribution Design Function

In some scenarios, a network designer may wish to run more than
one interior routing protocol in a network. This can be performed
by generalising the routing protocol demonstration of a provided so
far, of the OSPF routing protocol. So far we have discuss configuring
all routers which belong to the same autonomous system, and have
a direct physical connection, as having an adjacency in the OSPF
Network View.

To generalise this, we can consider the examples described previ-
ously as having an implicit default label, which sets the IGP label to
being OSPF. We now define this IGP label is being used to determine
which interior Gateway protocol to run on that Network Element. If
this label is not provided, then we will default to a label of OSPF.

The workflow for this process is shown in Figure 9.8. We note here
that this Design Function modifies an set of existing Network Views,
rather than creating a new Network View.

For this example we will consider the topology shown in Figure 9.9.
In order for multiple interior gateway protocols to run within a

single autonomous system, the process of route redistribution needs
to be considered. In particular, it is important to consider the running
multiple independent router protocols within the network, and skew-
ers topology information. Network designer must therefore consider
the interactions between these protocols, and apply careful network
design, to avoid routing loops from occurring. Such algorithms are
beyond the scope of this basis, but we refer the reader to the discus-
sion in Edgeworth et al. [28].

In order for router to exchange information between different writ-
ing protocols, the router must run multiple protocols. An example
provided in Edgeworth et al. [28] shows an example of route redis-
tribution. In this example, routers R1, R2, and R3 run the EIGRP
routing protocol, and routers R3, R4, and R5 run the OSPF routing
protocol. It can be seen that router R3 runs both EIGRP and OSPF,
and therefore the configuration of this router needs to consider the
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Figure 9.9: Topology showing multiple IGPs

sharing of information between the two protocols, for connectivity
between R1 and R2, and R4 and R5.

The simplest form redistribution, would be to handle this and the
compiler. If a Network Element participates in multiple interior gate-
way router protocol Network Views, that redistribution command can
be added for each riding protocol it belongs to, to redistribute to the
other protocols. However this shifts limitation into the compilers, and
removes the ability to perform policy at the Network View design
level.

An alternative approach, is to have a redistribution Design Func-
tion, which runs after the individual routing protocol Design Func-
tions. This redistribution Design Function then sets the appropriate
labels on the writing protocol Network Views, according to the redis-
tribution policy of the network. The compilers can then look at these
labels, and apply the appropriate policy of the network designer.

Multi-Level iBGP Hierarchy

The iBGP scalability approach described in Section 5.7.3 can be ex-
tended further to introduce a two-level hierarchy. For this example
we will consider the topology shown in Figure 9.10. In this example
we use a new label for route reflection to indicate the hierarchy. This
label, T, denotes a router as being the top level route-Reflector within
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an autonomous system. We have also introduced a label to denote
the grouping of route-reflectors at the first level of hierarchy. This
label denotes a cluster and is shown in the figure by the dashed boxes
around the sets of routers.

We then construct the Network Element Connections according
to the following rules. We first divide the Network Elements into
sets according to their autonomous system label, as before. We then
divide these sets further, according to the cluster label. We then look
at each individual cluster. We apply the same rules as before: Clients
only connect to Route Reflectors, and Route Reflectors connect to
other Route Reflectors.

In this example, the Network Elements in Cluster A are 1, 2, 3, and
4. Within this cluster, 1 and 2 are denoted Route Reflectors through
the R label. 3 and 4 are Clients denoted by the C label. Thus we
create Network Element Connections (3, 1), (3, 2), (4, 1) and (4,2).
We also create Network Element Connection (1, 2) between the Route
Reflectors. The Network Elements in Cluster B are 7, 8, 9, and 10,
where 7 and 8 are Route Reflectors, and 9 and 10 are Clients. We thus
create Network Element Connections (9, 7), (9, 8) and (10, 7), (10,
8). We also create a Network Element Connection (7, 8) between the
Route Reflectors.

We can now consider the hierarchical case. For this, we ignore
the cluster label, as this relates to the two level hierarchy, in how
we establish Network Element Connections between the R and the C
routers. The top level, we only consider the autonomous system label,
and the routers, labelled as T or R. We then follow a similar approach
in creating Network Element Connections, as we did in the previous
case. We create a client relation between R and T routers, and a peer
relation between T routers. In this example, Network Elements 1, 2, 7,
and 8 are denoted R, and 5 and 6 are denoted T. We therefore create
Network Element Connections (1, 5), (1, 6), (2, 5), (2, 6), (7, 5), (7, 6)
and (8, 5), (8, 6). We also create the peering session (5, 6).

This example has shown how successive refinement of multiple
labels can be used to introduce grouping. This use of labels for
grouping and to denote roles, scales according to the required de-
sign policy. This can group Network Elements in multiple different
manners, which differs to the more linear approach of an object-
oriented Abstract Network Model. The use of labels allows more
complicated policies to be expressed, and also allows for verification
using verification Design Functions.
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Figure 9.10: Topology showing two-level Route Reflector hierarchy
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Figure 9.11: Workflow for BGP Policy Design Function
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BGP Policy

In this section we provide a brief overview of using the framework to
represent BGP policy. Routing Policy can be applied to the ingress or
egress of a BGP session, or on the BGP process itself. This could be
represented in our approach on the Network Views on the Network
Element Interfaces. This would required abstracting the Network Ele-
ment Interface away from representing the physical network interface,
and extending the idea of a logical Loopback interface, which can
terminate BGP sessions. Routing Policy typically applies to a group
of devices, such as an autonomous system. To avoid repetition, the
relationships could be described using a Policy Graph Model, where
the nodes represent the device groups. This can then be transformed
by the Design Function to map the policy onto the appropriate Net-
work Elements.

Alternatively, this Policy Graph Model could be applied as a pre-
processor step to the Network Whiteboard, to label the Network El-
ements as appropriate. Since the Network Views are constructed
from the Network Whiteboard, the Design Functions on the BGP Net-
work View can operate on the same information in either approach,
whether it is applied to the Network Whiteboard, or applied at a later
stage to the Network View. An example Policy Workflow is shown in
Figure 9.12. An application of the policy relationships described in
Figure B.1 is shown in Figure 9.13.

A more advanced version would use more complex data structures,
and map to an Abstract Syntax Tree for traditional language trans-
formation techniques to be used. We provide an overview of this
approach in Section 9.4.2.
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Figure 9.12: Routing Policy Workflow
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Figure 9.13: Routing Policy Labels applied to Network Elements. B rep-
resents Backbone, P represents Provider, and C represents
Customer

9.3.2 Optimisation Functions
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Optimisation functions can take two forms. The first is allocating
labels according to an optimisation algorithm, such as setting OSPF
costs to perform traffic engineering (such as preferring a certain pri-
mary link over a more expensive backup link), such as Fortz et al. [36].
An example of a workflow to perform this is provided in Figure 9.14.

OSPF Traffic Engineering 
Design Function

OSPF Network 
View

OSPF Network 
View’

Figure 9.14: Workflow for OSPF Traffic Engineering Design Function
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9.3 network view transformation

The second form is in modifying the structure of a Network View
produced by a Design Function. Generally these optimisations would
be better performed through the use of an enhanced Design Function,
which incorporates both the initial Design Function to produce the
Network View, and then applies the optimisation. This would ensure
that the Network View produced by a Design Function is that which
is used in subsequent Design Functions and in the compilers.

9.3.3 Verification Functions

Design Function

High-Level 
Primitive

High-Level Primitive

Low-Level 
Primitive

Low-Level 
Primitive

Verification 
Function

Optimisation 
FunctionANM ANM*

Verification Functions are a extension of Design Functions. Rather
than creating or modifying a Network View, they return a boolean
value as to whether the Network View meets a set of verification
criteria. This is analogous to static checking in Compiler Construction,
where errors can be detected and reported during the View Genera-
tion process.

Such Verification Functions use the same primitives as Design Func-
tions, but do not modify the Network View. The output of a Ver-
ification Function is a Boolean true or false, and can be expanded
for optional messages such as Debug, Informational, Warning, or
Exception.

Another example is to check the consistency of IP address alloca-
tions, such as all IP addresses in the same broadcast domain belong-
ing to the same subnet. An example of verification functions using
AutoNetkit is shown in Listing I.1.

An example of a simple Verification Function is checking that a
Network View is fully-connected: that there are no partitions. This
could be computed directly using a graph algorithm, such as the con-
nected components algorithm discussed previously. If the number of
connected components in a Network View is one then the graph is not
partitioned. If the number of connected components is greater than
one, then the graph is partitioned, which may indicate a problem,
depending on the context of the Network View. Another form of
verification is because a Network Element Interface can be bound to
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9.3 network view transformation

more than one Network Element Connection. This can arise in cases
such as when layer 3 devices are connected to a Layer 2 device such
as a switch. We discussed such an example in Section 5.7.1.

In this case the resulting topology for a routing protocol can result
in multiple Network Element Connections being bound to the same
Network Element Interface. In some situations, this can be valid but
in other may be invalid. For instance, in the OSPF routing protocol
a router cannot have more than one interface in the same broadcast
domain. We can write a verification function to check this, by looking
Layer 2 Connectivity Network View, and verifying that each broad-
cast domain connects to a most one Network Element Interface for
each Network Element. This consistency check further demonstrates
the power of the separation of concerns of the low-level configuration
as such a verification becomes a simple task compared to trying to
extract the topology from the device models.

A further example is an OSPF example, where one check may be
that Area Border Routers are only connected by other Area Border
Routers, or by Backbone routers. We refer to the topology shown in
Figure 9.15. In order to configure the areas for the OSPF routing
protocol, a user can express the desired area as an label, on the
appropriate Network Element Interface, on the Network Whiteboard.
Recall the following definitions, where the OSPF Role of a router is:

• Area Border Router (A) if it has an interface in area 0, and an
interface not in area 0.

• Backbone Router (B) if all its interfaces are in area 0

• Intermediate Router (I) if no interfaces are in area 0

We can then define a Network Element label allocation function
that maps the ospf_role based on these interface rules. We can then
examine the topology to confirm that Backbone Routers only connect to
Backbone Routers or Area Border Routers, and that Intermediate Routers
only connect to Intermediate Routers or Area Border Routers.

The use of Verification Functions allows checks to be built into the
network design workflow. Verification Functions can use the same
Low-Level and High-Level Primitives used in Design Functions. They
can also be applied before a Design Function to act as a Consistency
Check Function of the Network Views which are used as inputs to
the Design Function.

They can be written independent of the Design Functions, allowing
for separation of concerns of the testing and design stages. This
could be expanded further using the approaches discussed in Nc-
Guard [104].

324



9.3 network view transformation

I

A

B

A

B

I

I I

I

1
1

1

1

1

1

0

0

0

0

0
0

0
0

2
2

2

2

2

2
2 2

Figure 9.15: Reproduction of the OSPF View Example from Chapter 4,
showing OSPF Area labels on Network Element Interfaces, from
which the OSPF Role Label (A, B, or I) is derived.

9.3.4 Composition of Design, Optimisation and Verification Functions

The set of Design Functions, Verification Functions, and Optimisation
Functions to build a specific Network Layer can be grouped into a
module for that Network View.

We can compose these functions:

1. Expand a Network Whiteboard

2. Apply unmanaged switch transformations

3. Apply VLAN Design Function

4. Apply extended IP addressing Design Function

5. Apply ACLs

6. Set multiple IGPs

7. Set OSPF traffic engineering

8. Set iBGP scalability

9. Apply eBGP policy

Through separation of concerns, we can substitute more advanced
Design Functions (IP addressing, iBGP scalability), introduce new
intermediate Network Views (such as for switches and VLANws),
apply Optimisation Functions (OSPF traffic engineering), or add new
functionality in an existing Network View (eBGP policy). We can
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9.4 generation of low-level configuration state

also apply Verification Functions to check the integrity of a Network
View. This allows us to both re-use design logic, and to extend design
workflows as necessary. An example flowchart of these extensions is
shown in Figure 9.16.

Physical DF

Layer 2 DF

Layer 2 Conn 
DF

Enhanced IP 
DF

OSPF DF
Enhanced 
iBGP DF

eBGP DF

NW 
Expansion DF

Switches DF

VLANS DF ACL DF

Multiple IGP 
DF

EIGRP DF

IS-IS DF

Redistribution 
DF

eBGP Policy 
DF

Network 
Whiteboard

Abstract 
Network Model

Basic Network 
Whiteboard

Verification 
Function

Figure 9.16: Workflow composed of the Design Function extensions de-
scribed in this section. Bold indicates a new Design Func-
tion, Bold Italics indicates an enhanced Design Function, and
unbolded indicate previously defined Design Functions un-
changed.

9.4 generation of low-level configuration state

9.4.1 Intermediate Device Model Schema

In Section 9.2.2 we describe how we could introduce a schema for
Network Views. We could also introduce a schema for the Intermedi-
ate Device Model. This could leverage the work carried out to model
device configurations in the YANG language, such as the collection
of YANG models in the YangModels3 GitHub page.

9.4.2 Abstract Syntax Tree representation for BGP Policy

An abstract-syntax tree approach used in compilers for programming
languages would allow expansion of our current approach to repre-
sent BGP Policy and Access Control Lists. This would expand on the
simple list structure we presented in Section 8.4.

It would allow for the if-then-else statements in a policy statement
to be represented in a vendor-independent language in the Network
Whiteboard and Network Views, and then transformed as appropri-

3 https://github.com/YangModels/yang
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9.4 generation of low-level configuration state

ate by the Device Compiler. This would systematically handle the
different approaches used to represent routing policy in low-level
configuration languages. This could then expand on work such as
Boehm et.al [10] or RPSL [2].

9.4.3 Device Compiler Inheritance

As discussed in Section 6.2.7 there are similarities and differences in
the logic used to compile the Intermediate Device Models from the
Abstract Network Models for different target devices. The common
code could be inherited using the programming concepts of inheri-
tance and composition, as shown in Figure 9.17.

This would also allow for minor variations between releases of
the same network operating system (such as versions of IOS) to be
handled in a systematic manner, with the variations handled through
the use of function inheritance, with the shared logic only required
to be written once.

IOS-XR

Device Base

RouterServer

Junos

IOS Base

Quagga IOS IOS-XR

Switch Firewall

Figure 9.17: An example of device inheritance sharing common logic.

9.4.4 Template Inheritance

Similar to Device Compiler Inheritance, many templating engines
allow composition of templates. This would allow large templates
to be composed of a series of smaller templates. This would al-
low similar benefits to Device Compiler Inheritance, where shared
template logic could be written once, and only variations between
templates required to be written. For instance an IOS template could
be composed of smaller templates for each of the interface, OSPF,
and BGP blocks. If there was a change between releases of IOS, then
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9.4 generation of low-level configuration state

the master template for that release could incorporate the relevant
changes, and inherit the shared smaller templates for common con-
figuration syntax.

9.4.5 Compiling to Different Output Targets

One of the main contributions of our approach has been to provide
a systematic methodology to transform a high-level network descrip-
tion from the Network Whiteboard into the low-level Intermediate
Device Model. This Device Model could be used as the input to
network programmability work such as Ansible playbooks [61] or
YANG/Netconf-based systems, or integration with existing template-
based approaches which we discussed in Chapter 3. The key require-
ment for each of these systems is a description of desired network
state. Our approach generates such network state from a high-level
description.

As the Intermediate Device Models are represented in a simple
Python dictionary or JSON structure, allowing the template engine
to be substituted for a conversion into alternative formats used by
current tools, such as YAML, XML (used by Netconf/YANG), or CSV.
This would allow our systematic high-level approach to be integrated
with existing workflows and tools.

9.4.6 Compiling to Hardware

The Platform Compiler approach presented in Section 6.4.1 is re-
sponsible for creating the Intermediate Hardware Model. In this
thesis we used this to allocate interface names and add out-of-band
management interface as required by the simulation environment.

This approach could be expanded further to allow the modelling
of hardware requirements, such as interface names being determined
by a rack/chassis/line-card hierarchy that is present on high-end real-
world routers. Addition hardware-specific information could be added
to the Intermediate Hardware Model by adding steps to the Platform
Compiler approach. These could then be handled by the Device
Compiler. This is a benefit of our approach of decoupling the device
hardware specifics from the Device Compiler, and moving them into
the Platform Compiler.
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9.5 expansion and new applications of system

9.4.7 Virtual Devices and Multi-Chassis Devices

The system could be expanded to handle virtual devices (where a
single device represents multiple Network Elements) or multi-chassis
devices (where a single router is composed of multiple “devices”).
The former could be handled through the use of labels on the Net-
work Whiteboard and Network Views, which denote that multiple
virtual routers belong to a single physical network device. This could
then be aggregated in the Platform Compiler and Device Compiler
steps. Multi-Chassis devices could also be handled in the Platform
Compiler and Device Compiler steps, where the appropriate set con-
figurations are generated for the single Network Element in the Net-
work Whiteboard.

9.5 expansion and new applications of system

9.5.1 Network Experimentation

As we showed in Chapter 7, the system can be used in a black-box
mode as a standalone console script, similar to a traditional pro-
gramming language compiler. Combined with an automated collec-
tion system, this encourages network experimentation, where a user
could modify parameters on the Network Whiteboard, automatically
generate and deploy the configurations, and automatically collect
results. This simplifies the steps required to carry out a scientific
experimentation methodology. By storing the Network Whiteboards,
this encourages reproducible research, realising similar benefits to
reproducible research using the Mininet platform, as described by
Handigol et al. [43].

9.5.2 Engineering Workflows

As we have shown, our approach can be used to compile to multiple
target platforms and devices. This was demonstrated in the OSPF
example in Section 6.2, where we compiled for multiple devices from
the same Network Whiteboard. This was also demonstrated in the
case studies of Chapter 8, in particular the Large-Scale Example in
Section 8.6, where we compiled the same Network Whiteboard for
Quagga on the Netkit emulation platform, and the C-BGP simulation
platform. In this Large-Scale Example we also showed examples
offline analysis using shortest-path algorithms.
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9.5 expansion and new applications of system

This approach could be used to construct an engineering workflow,
where the Network Whiteboard description is compiled to multiple
targets. An example of such a workflow is shown in Figure 9.18.
The Design step uses the Network Whiteboard and Design Functions
as outlined in our previous examples. The Algorithm step could use
offline analysis such as shortest path or other graph algorithms to
check theoretical properties of network topologies (represented as
graphs in Network Views). The Simulation step could use a platform
such as C-BGP to model idealised protocol behaviour, and allow
deep inspection of network behaviour. The Emulation step can use
platforms such as Netkit, VIRL, or Junosphere to test device configu-
rations against real operating systems, including real-world bugs and
specification interpretations. Finally, as described in Section 9.4.6, we
can compile to hardware devices for the Testbed step and to deploy to
a Production network, like described in industry presentations such
as Schmidt et al. [90].

Design Algorithm Simulation

Emulation Testbed Production

Network 
Whiteboard

Figure 9.18: An example engineering workflow from algorithmic analysis to
deployment in a production network.

9.5.3 Integration with an Existing Network

The work in this thesis focussed on the generation of configurations
for a green-fields network. Integration with an existing network
deployment could be performed using the techniques for “Bootstrap-
ping an Existing Network” described by Caldwell et al. [16].

9.5.4 Run-Time System

Finally, our work focussed on the static generation of device configu-
rations. Our work could be integrated into a closed-loop system for
real-time network management. This could use techniques such as
those discussed by Chen et al. [22] to model the ordering of execution
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9.6 conclusion

of commands internal to a router. Our framework could also be
integrated with work such as that of Vanbever et al. [105] to generate
and validate the intermediate Network Views from the current state
to the desired state.

We note that much of the complexity in maintaining a run-time
network is in modelling the sequence of changes to move from the
current network state to the desired network state. The work on Net-
conf and YANG has made progress in this regard in allowing a device
state specification to be uploaded to a device, with the device itself
taking care of the internal sequencing to implement this desired state.
This could be integrated with our approach through compilation of
the Abstract Network Model to the YANG configuration format as
described in Section 9.4.5. This would then allow us to focus on the
network-level sequencing. This could be performed using the work of
Vanbever et al. [105], which could be integrated with our graph-based
approach to representing network topologies.

9.6 conclusion

As this chapter demonstrates, there are numerous avenues for future
research for the representation and implementation of network policy
and associated compilation steps. These further demonstrate the
ability of the approach and toolchain presented in this thesis to both
answer the Research Questions presented in Chapter 3, and how they
can be expanded further in future work to address an even larger set
of network configuration tasks.
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C O N C L U S I O N S
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In this thesis we have addressed the major challenge of improving
the reliability and cost of design and maintenance of modern large
scale traditional computer networks by introducing a disciplined and
well structured set of abstractions and transformations that automate
the creation of router configurations from high-level network policy
documents. In doing so we have emphasised the use of a repre-
sentation language that is compatible with the skills and domain
knowledge of current network engineers. We have adopted principles
derived from computer language compilation where staged transfor-
mations are made to refine the design towards implementation. We
have used a set of graph based intermediate representations and in-
corporated a flexible code generation arrangement that is compatible
with all current network hardware.

The tool developed around these abstractions have been made avail-
able to the wider networking community and has been validated at
scale in simulated network environments. We have shown through
this process that it is feasible to transition to a new approach in static
network design within the constraints current networks.

The adoption of new approaches in the networking industry, such
as Software-Defined Networking has had a variable success rate. In
reflecting on the work of this thesis it must be acknowledged that
adoption depends of a combination of appropriate abstractions and
languages but also on other factors. There is a strong “network
effect” in adoption of new technology in networking whereby the
operation and commitment of bigger players in the industry may be
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vital to adoption. It is not clear yet if there is sufficient commercial
incentive for the large vendors to adopt an approach which may
lead to the commodification of their hardware and software through
standardisation. Our approach can be used with existing network
hardware deployments.

10.1 research questions

The research questions we set out to address in this thesis are listed
below, along with a summary of how they have been addressed in
this thesis.

10.1.1 Question 1

Is there a declarative representation of High-Level Network Policy that is
also likely to be widely adoptable by current network practitioners?

Network
Whiteboard

Design
Functions

Abstract
Network Model

Device
Compiler

Template
Assembler

Intermediate
Device Model Device Configs

Platform
Compiler

Intermediate
Hardware Model

We have addressed this question through our use of the Network
Whiteboard abstraction, which we presented in Chapter 4. As we dis-
cussed in Chapter 7 and Chapter 8, the Network Whiteboard can be
constructed from a variety of methods, including programmatically
or through a graph-based description format such as GraphML. This
approach can be extended to support third-party formats such as the
XML format used in a proprietary tool such as Cisco VIRL. The user
feedback in Section 8.7.3 confirms that this approach is readily usable
by current network practitioners.

10.1.2 Question 2

What is a better intermediate representation of network configuration that is
based on graph theory, supports a well structured compilation process and
provides clear separation of concerns?

In Chapter 4 we introduced the Network View abstraction, which
is an intermediate representation of network configurations. This
is graph-based and allows the expression of network configurations
using the Network Element, Network Element Interface, and Net-
work Element Connections concepts. Through the use of labels we
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have demonstrated how this abstraction can formally capture the key
information in the network design process. The set of all Network
Views forms the Abstract Network Model.

10.1.3 Question 3

How can declarative High-Level Network Policy descriptions be transformed
into a graph-based intermediate format using a compiler that is extensible in
terms of new types of policies and new protocols?
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In Chapter 5 we introduced Design Functions which transform the
High-Level Network Policy Description expressed using the Network
Whiteboard, into the graph-based intermediate format of the Net-
work Views. These Design Functions are built from the Low-Level
Primitives and High-Level Primitives which in turn are based on set
theory and graph theory. In Section 5.7 we discussed a number of
ways in how Design Functions could be extended to support different
devices such as switches, or different design policies such as for iBGP
designs. In Chapter 8 we further demonstrated how our approach can
be adopted to accommodate different network designs.

10.1.4 Question 4

How can the configurations for a diversity of network devices be generated
systematically from a graph-based intermediate representation?
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10.2 conclusion

In Chapter 6 we presented the approach to generation of low-level
device configurations. This is a two-step process, where we first
construct an Intermediate Device Model, which is an intermediate
representation of the information to be configured on that specific
network device. This Intermediate Device Model is built using the De-
vice Compiler, from the information in the Abstract Network Model.
The second step assembles the individual device configurations from
this Intermediate Device Model, using simple templates. In Chapter 6

we discussed how this is motivated from the diversity of low-level
configurations for the configuration of interfaces and OSPF, and in
Chapter 8 we showed how this approach can be used for the Quagga,
IOSv, IOSvL2 devices, run on the Netkit and Cisco VIRL simulation
testbeds, and the C-BGP simulation software. This demonstrated how
our approach and toolchain can generate configurations for a diverse
range of network devices and testbed platforms.

10.1.5 Question 5

What are the scalability and extensibility characteristics for the compilation
of High-Level Network Configuration Policy to device configurations in
terms of network size and diversity of network protocols and target devices?

In Chapter 5 and Chapter 6 we showed how our approach and
toolchain can be extended to cater for both network protocols and
target devices. We demonstrated this using AutoNetkit in Chapter 7

and Chapter 8, where we compiled our High-Level Network Config-
uration Policy to a variety of network protocols and target devices,
showing extensibility. We also demonstrated scalability in quickly
compiling a large-scale network. In Chapter 9 we discussed potential
future directions that are enabled by these scalability and extensibility
characteristics.

10.2 conclusion

By addressing these research questions we have presented a theo-
retical approach and practical toolchain that can be used to express
High-Level Network Configuration Policy together with intermediate
representations and transformations, that can be used to generate
low-level device configurations for a variety of network protocols
and devices, in a manner that is both extensible and scalable, and
able to be adopted by the research community and current network
practitioners.
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10.2 conclusion

The approach presented in this thesis provides both a Distributed
State Abstraction and a Specification Abstraction, which are two of the
three abstractions which form Software-Defined Networking as out-
lined by Shenker [95]. We do not present a Forwarding Abstraction:
changing the Forwarding Abstraction, such as to OpenFlow, would
require replacing infrastructure and retraining support staff, which
can be a significant expense.

Our approach to the Distributed State and the Specification Ab-
straction allows many of the benefits of a systematic and software
defined approach to networking, whilst leveraging existing network
deployments and network practitioner expertise.
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A
R F C 3 1 3 9 R E Q U I R E M E N T S

The following is a reproduction of the full set of requirements identified in
Sanchez et al. [89].

1. Provide means by which the behavior of the network can
be specified at a level of abstraction (network-wide configura-
tion) higher than a set of configuration information specific to
individual devices,

2. Be capable of translating network-wide configurations into
device-local configuration. The identification of the relevant
subset of the network-wide policies to be down-loaded is ac-
cording to the capabilities of each device,

3. Be able to interpret device-local configuration, status and
monitoring information within the context of network-wide con-
figurations,

4. Be capable of provisioning (e.g., adding, modifying, deleting,
dumping, restoring) complete or partial configuration data to
network devices simultaneously or in a synchronized fashion
as necessary,

4a. Be able to provision multiple device-local configurations
to support fast switch-overs without the need to down- load
potentially large configuration changes to many devices,

5. Provide means by which network devices can send feedback
information (configuration data confirmation, network status
and monitoring information, specific events, etc.) to the man-
agement system,

6. Be capable of provisioning complete or partial configuration
data to network devices dynamically as a result of network
specific or network-wide events,

7. Provide efficient and reliable means compared to current
versions of today’s mechanisms (CLI, SNMP) to provision large
amounts of configuration data,

8. Provide secure means to provision configuration data. The
system must provide support for access control, authentication,
integrity-checking, replay- protection and/or privacy security
services. The minimum level of granularity for access control
and authentication is host based. The system SHOULD support
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rfc 3139 requirements

user/role based access control and authentication for users in
different roles with different access privileges,

9. Provide expiration time and effective time capabilities to
configuration data. It is required that some configuration data
items be set to expire, and other items be set to never expire,

10. Provide error detection (including data-specific errors) and
failure recovery mechanisms (including prevention of inappro-
priately partial configurations when needed) for the provision-
ing of configuration data,

11. Eliminate the potential for mis-configuration occurring through
concurrent shared write access to the device’s configuration
data,

12. Provide facilities (with host and user-based authentication
granularity) to help in tracing back configuration changes,

13. Allow for the use of redundant components, both network
elements and configuration application platforms, and for the
configuration of redundant Network Elements.

14. Be flexible and extensible to accommodate future needs.
Configuration management data models are not fixed for all
time and are subject to evolution like any other management
data model. It is therefore necessary to anticipate that changes
will be needed, but it is not possible to anticipate what those
changes might be. Such changes could be to the configuration
data model, supporting message types, data types, etc., and
to provide mechanisms that can deal with these changes effec-
tively without causing inter-operability problems or having to
replace/update large amounts of fielded networking devices,

15. Leverage knowledge of the existing SNMP management
infrastructure. The system MUST leverage knowledge of and
experience with MIBs and SMI. (Sanchez et al. [89])
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N E T K I T S M A L L I N T E R N E T L A B

The following two slides, and the example router configurations are
reproduced from Di Battista et al. [25].

last update: May 2007netkit – [ lab: bgp-small-internet ]© Computer Networks 
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Figure B.1: Slide from Di Battista et al. [25] showing BGP Policy

341



netkit small internet lab

la
st

up
da

te
: 

M
ay

 2
00

7
ne

tk
it

–
[ 

la
b:

 b
gp

-s
m

al
l-i

nt
er

ne
t

]
©

C
om

pu
te

r N
et

wo
rk

s 
R

es
ea

rc
h 

G
ro

up
 R

om
a 

Tr
e

A
S
3
0

et
h014

et
h225

11
.0
.0
.2
8/
30

11
.0
.0
.2
4/
30

A
S
4
0

11
.0
.0
.8
/3
0S

et
h11

et
h11

P

40
.4
.4
.0
/2
4

11
.0
.0
.1
2/
30

O

Q

et
h229

A
S
1

A
S
2
0

et
h21

et
h12

et
h13

et
h034

et
h16

et
h02

T

U

N

et
h010

et
h021

et
h222

et
h126

et
h030

et
h317

et
h318

E

R

30
.3
.3
.0
/2
4

20
.1
.1
.0
/2
4

C

11
.0
.0
.1
6/
30

11
.0
.0
.2
0/
30

A
S
1
0
0

A
S
2
0
0

et
h11

et
h033

et
h15

et
h01

F

B20
0.
2.
0.
0/
16

et
h21

et
h35

et
h06

et
h19 et
h110

et
h02

et
h21 et
h21

K

10
0.
1.
3.
0/
24

L

10
0.
1.
2.
0/
24

J 10
0.
1.
0.
0/
30

D

10
0.
1.
0.
4/
30

H
10
0.
1.
0.
8/
30

11
.0
.0
.4
/3
0

11
.0
.0
.0
/3
0

A
S
3
0
0

et
h11

et
h11

et
h013

et
h09

M

20
0.
1.
12
8.
0/
17

et
h02

et
h12

et
h12

et
h01

X
Y

20
0.
1.
0.
0/
18

20
0.
1.
64
.0
/1
8

A
11
.0
.0
.3
2/
30

Fi
gu

re
B.

2
:N

et
ki

t
La

b
Sm

al
lI

nt
er

ne
t

To
po

lo
gy

fr
om

D
iB

at
ti

st
a

et
al

.[
2

5
]

342



B.1 example router configurations

b.1 example router configurations

!
hostname bgpd
password zebra
enable password zebra
!
router bgp 20
network 20.1.1.0/24
network 11.0.0.4/30
network 11.0.0.16/30
network 11.0.0.32/30
!
neighbor 11.0.0.33 remote-as 200
neighbor 11.0.0.33 description Router as200r1
neighbor 11.0.0.33 default-originate
neighbor 11.0.0.33 prefix-list as200In in
neighbor 11.0.0.33 prefix-list defaultOut out
!
neighbor 11.0.0.5 remote-as 100
neighbor 11.0.0.5 description Router as100r1
neighbor 11.0.0.5 default-originate
neighbor 11.0.0.5 prefix-list as100In in
neighbor 11.0.0.5 prefix-list defaultOut out
!
neighbor 20.1.1.2 remote-as 20
neighbor 20.1.1.2 description Router as20r2 (iBGP)
!
neighbor 20.1.1.3 remote-as 20
neighbor 20.1.1.3 description Router as20r3 (iBGP)
!
neighbor 11.0.0.18 remote-as 30
neighbor 11.0.0.18 description Router as30r1 (eBGP)
! Use the route-map when announcing default route
neighbor 11.0.0.18 default-originate route-map dontUseMe
! Use the route-map in all the other cases
neighbor 11.0.0.18 route-map dontUseMe out
neighbor 11.0.0.18 prefix-list defaultOut out
!
ip prefix-list as200In permit 200.2.0.0/16
ip prefix-list as100In permit 100.1.0.0/16
ip prefix-list defaultOut permit 0.0.0.0/0
!
route-map dontUseMe permit 10
set as-path prepend 20 20 20
!
log file /var/log/zebra/bgpd.log
!
debug bgp
debug bgp events
debug bgp filters
debug bgp fsm
debug bgp keepalives
debug bgp updates
!

Listing B.1: BGPd configuration for as20r1 from Di Battista et al. [25]

!
hostname ripd
password zebra
!
router rip
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network 20.1.1.0/24
redistribute connected
!
log file /var/log/zebra/ripd.log

Listing B.2: RIPd configuration for as20r1 from Di Battista et al. [25]

!
hostname bgpd
password zebra
enable password zebra
!
router bgp 30
network 30.3.3.0/24
network 11.0.0.8/30
!
neighbor 11.0.0.9 remote-as 300
neighbor 11.0.0.9 description Router as300r1
neighbor 11.0.0.9 default-originate
neighbor 11.0.0.9 prefix-list as300In in
!
neighbor 11.0.0.26 remote-as 1
neighbor 11.0.0.26 description Router as1r1 (eBGP)
!
neighbor 11.0.0.17 remote-as 20
neighbor 11.0.0.17 description Router as20r1 (eBGP)
! Use the route-map when announcing default route
neighbor 11.0.0.17 default-originate route-map dontUseMe
! Use the route-map in all the other cases
neighbor 11.0.0.17 route-map dontUseMe out
!
ip prefix-list as300In permit 200.1.0.0/16
ip prefix-list as300In permit 200.1.0.0/17
!
route-map dontUseMe permit 10
set as-path prepend 30 30 30
!
log file /var/log/zebra/bgpd.log
!
debug bgp
debug bgp events
debug bgp filters
debug bgp fsm
debug bgp keepalives
debug bgp updates
!

Listing B.3: BGPd configuration for as30r1 from Di Battista et al. [25]
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Table C.1: Network Element Connections for Simplified Small Internet Ex-
ample

Network Element Connection Network Elements

ε1 (π1,π2)

ε2 (π1,π6)

ε3 (π1,π7)

ε4 (π2,π3)

ε5 (π2,π4)

ε6 (π3,π4)

ε7 (π3,π9)

ε8 (π4,π5)

ε9 (π4,π6)

ε10 (π7,π12)

ε11 (π8,π9)

ε12 (π8,π10)

ε13 (π9,π10)

ε14 (π11,π13)

ε15 (π12,π14)

ε16 (π13,π14)
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Table C.2: Network Element Interfaces for Simplified Small Internet Exam-
ple

Network Element Network Element Interfaces

π1 τa, τb, τc
π2 τa, τb, τc
π3 τa, τb, τc
π4 τa, τb, τc τd
π5 τa

π6 τa, τb
π7 τa, τb
π8 τa, τb
π9 τa, τb, τc
π10 τa, τb
π11 τa

π12 τa, τb
π13 τa, τb
π14 τa, τb

Table C.3: Network Element Interface bindings for Simplified Small Internet
Example

Network Element Connection Binding 1 Binding 2

ε1 (π1, τa) (π2, τa)

ε2 (π1, τc) (π6, τa)

ε3 (π1, τb) (π7, τa)

ε4 (π2, τc) (π3, τa)

ε5 (π2, τb) (π4, τa)

ε6 (π3, τb) (π4, τd)

ε7 (π3, τc) (π9, τc)

ε8 (π4, τc) (π5, τa)

ε9 (π4, τb) (π6, τb)

ε10 (π7, τb) (π12, τa)

ε11 (π8, τa) (π9, τc)

ε12 (π8, τb) (π10, τb)

ε13 (π9, τb) (π10, τa)

ε14 (π11, τa) (π13, τa)

ε15 (π12, τb) (π14, τa)

ε16 (π13, τb) (π14, τb)
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Table C.4: Loopback IP Address allocations for Simplified Small Internet
Example

Network Element τ1 τ2 τ3 τ4

π1 H.2 M.1 L.1 -

π2 H.1 J.1 I.1 -

π3 I.2 K.1 P.1 -

π4 J.2 O.1 N.1 K.2

π5 N.2 - - -

π6 L.2 O.2 - -

π7 M.2 Q.1 - -

π8 R.1 S.1 - -

π9 P.2 T.1 R.2 -

π10 T.2 S.2 - -

π11 U.1 - - -

π12 Q.2 V.1 - -

π13 U.2 W.1 - -

π14 V.2 W.2 - -

E = {ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8, ε9, ε10, ε11, ε12, ε13, ε14, ε15, ε16} = {

(π1,π2), (π1,π6), (π1,π7), (π2,π3), (π2,π4), (π3,π4),

(π3,π9), (π4,π5), (π4,π6), (π7,π12), (π8,π9), (π8,π10),

(π9,π10), (π11,π13), (π12,π14),

(π13,π14)}

Figure C.1: Example of Ewhiteboard for Simplified Small Internet Example

T = {

(π1, {τa, τb, τc}), (π2, {τa, τb, τc}), (π3, {τa, τb, τc}),

(π4, {τa, τb, τc τd}), (π5, {τa}), (π6, {τa, τb}),

(π7, {τa, τb}), (π8, {τa, τb}), (π9, {τa, τb, τc}),

(π10, {τa, τb}), (π11, {τa}), (π12, {τa, τb}),

(π13, {τa, τb}), (π14, {τa, τb})

}

Figure C.2: Example of T for Simplified Small Internet Example
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B = {

(ε1, {(π1, τa), (π2, τa)}), (ε2, {(π1, τc), (π6, τa)}),

(ε3, {(π1, τb), (π7, τa)}), (ε4, {(π2, τc), (π3, τa)}),

(ε5, {(π2, τb), (π4, τa)}), (ε6, {(π3, τb), (π4, τd)}),

(ε7, {(π3, τc), (π9, τc)}), (ε8, {(π4, τc), (π5, τa)}),

(ε9, {(π4, τb), (π6, τb)}), (ε10, {(π7, τb), (π12, τa)}),

(ε11, {(π8, τa), (π9, τc)}), (ε12, {(π8, τb), (π10, τb)}),

(ε13, {(π9, τb), (π10, τa)}), (ε14, {(π11, τa), (π13, τa)}),

(ε15, {(π12, τb), (π14, τa)}), (ε16, {(π13, τb), (π14, τb)}),

}

Figure C.3: Example of B for Simplified Small Internet Example

LΠ = {

(π1, {(asn, 1), (role, router)}), (π2, {(asn, 20), (role, router)}),

(π3, {(asn, 20), (role, router)}), (π4, {(asn, 20), (role, router)}),

(π5, {(asn, 200), (role, router)}), (π6, {(asn, 30), (role, router)}),

(π7, {(asn, 40), (role, router)}), (π8, {(asn, 100), (role, router)}),

(π9, {(asn, 100), (role, router)}), (π10, {(asn, 100), (role, router)}),

(π11, {(asn, 300), (role, router)}), (π12, {(asn, 300), (role, router)}),

(π13, {(asn, 300), (role, router)}), (π14, {(asn, 300), (role, router)})

}

Figure C.4: Example of LΠ for Simplified Small Internet Example
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LB = {

{π1, {(τa, {(ip,H.2)}), (τb, {(ip,M.1)}), (τc, {(ip,L.1)})}},

{π2, {(τa, {(ip,H.1)}), (τb, {(ip, J.1)}), (τc, {(ip, I.1)})}},

{π3, {(τa, {(ip, I.2)}), (τb, {(ip,K.1)}), (τc, {(ip,P.1)})}},

{π4, {(τa, {(ip, J.2)}), (τb, {(ip,O.1)}), (τc, {(ip,N.1)}), (τd, {(ip,K.2)})}},

{π5, {(τa, {(ip,N.2)})}},

{π6, {(τa, {(ip,L.2)}), (τb, {(ip,O.2)})}},

{π7, {(τa, {(ip,M.2)}), (τb, {(ip,Q.1)})}},

{π8, {(τa, {(ip,R.1)}), (τb, {(ip,S.1)})}},

{π9, {(τa, {(ip,P.2)}), (τb, {(ip, T .1)}), (τc, {(ip,R.2)})}},

{π10, (τa, {(ip, T .2)}), (τb, {(ip,S.2)})}},

{π11, {(τa, {(ip,U.1)})},

{π12, {(τa, {(ip,Q.2)}), (τb, {(ip,V .1)})}},

{π13, {(τa, {(ip,U.2)}), (τb, {(ip,W.1)})}},

{π14, {(τa, {(ip,V .2)}), (τb, {(ip,W.2)})}},

}

Figure C.5: Example of LB for Simplified Small Internet Example
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D E S I G N D E TA I L S A N D D E F I N I T I O N S O F
P R I M I T I V E S

d.1 design details

d.1.1 Introduction

In this section we provide a more precise set of definitions for the
concepts presented in Section 4.4, and how they can be realised using
a graph theory-based approach.

This section is organised as follows. We first outline the notation
used for the implementation details. We then outline some funda-
mental graph theory terminology. We then discuss how graph theory
can be adapted to represent the key concepts outline in this chapter,
including Network Views, Network Elements, Network Element Con-
nections, and Network Element Interfaces, and the labelling of each
of these elements.

d.1.2 Notation

We adopt the common standard approach for notation suggested by
Voloshin [108]. We also use associative arrays to represent key value
pairs for labels. An example is

m = {k1 : v1,k2 : v1,k3 : v3, . . .}

These can be represented using tuples of key value pairs such as
{(k1, v1), (k2, v2), (k3, v3), . . .}. We define the function HAS_KEY(X, key)
to confirm the existence of the key key in the associative array X,
GET_KEY(X, key) to obtain the value of key in X, and SET_KEY(X, key, val

to set the value of key to val in X.
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d.1.3 Network Views and their elements

A Network Whiteboard can viewed as a special case of a Network
View. The functions that can be used on a Network View can also be
used on a Network Whiteboard.

Network Views

Network Views can be implemented using graphs. A separate graph
is used to represent each Network View.

This motivates the need for cross-Network View access of Network
Elements and Network Element Interfaces, in both the Design Func-
tions discussed in Chapter 5, and in the Configuration Generation
process discussed in Chapter 6. This cross-Network View access of
elements is enabled through the use of unique identifiers. We discuss
these identifiers in Table D.1.3.

We define a Network View asNV , which has the form of (NE,NEC,NEI,B,L)
where NE is the set of Network Elements, NEC is the set of Network
Element Connections, NEI is the set of Network Element Interfaces, B
is the set of Network Element Interface bindings for Network Element
Connections, and L is the set of Labels.

For notational simplicity, we represent the elements using the sym-
bols as shown in Table D.1. Using this notation, the Network View is
then defined as the form θ = (Π,E, T ,B,L)

Table D.1: Table of element notation symbols

Element Type Set Symbol Element Symbol

Network Whiteboard – ωi

Network View Θ θi

Network Element Π πi

Network Element Connection E εi

Network Element Interface T τi

Network Element Interface Binding B b

Network Element Connection
Distinguisher

δ -

Network Whiteboard

Special case of Network View. Not defined in ANM, (covered later),
but otherwise all functions within scope of a NV apply.
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Network Elements

Network Elements are implemented using nodes. The set of Network
Elements in a Network View corresponds to the set of nodes in a
graph:

G = (N,E)

where N = n1,n2,n3, . . .
This is then implemented as a Network View:
θ = (Π, . . .) where Π = π1,π2,π3, . . .
This approach contrasts to an alternative object-oriented approach

which would require more machinery to do cross-layer copying.

Network Element Connections

Network Element Connections are implemented using edges. The set
of Network Element Connections in a Network View corresponds to
the set of edges in a graph.
G = (N,E) where E = e1, e2, e3, . . . where ek represents a pair of

nodes (n1,n2).
θ = (Π,E) where E = ε1, ε2, ε3, . . . where each εk represents a pair

of Network Elements (πi,πj)
For reference, we provide the table of the Network Element Con-

nections for the Simplified Small Internet Example Table C.1. These
examples are provided in Appendix C.

Network Element Interfaces

The implementation of Network Element Interfaces has two compo-
nents.

The set of Network Element Interfaces T consists of Network El-
ement Interfaces τk where each Network Element Interface τk is
defined as (πi,αj) where:

• πi is the Network Element to which this Network Element In-
terface belongs.

• αj is the unique identifier of this Network Element Interface
within the Network Element πi.

The constraints around α are discussed in Table D.1.3.
The set of Network Element Interface bindings has the form B =

b1,b2,b3, . . . where each Network Element Interface binding bk is of
the form (εi, {(πj, τj), (πk, τk)}) where:
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• εi is the Network Element Connection for which this binding
applies

• τj is a binding of this Network Element Connection to Network
Element Interface τj for Network Element πj

• τk is a binding of this Network Element Connection to Network
Element Interface τk for Network Element πk

Recall that εi is of form (πj,πk), which implies that Network Ele-
ment Connection εi connects Network Elements πj and πk.]

From this, we define the constraint that each of pil and πm in the
Network Element Interfaces must be present in the Network Element
Connection (πj,πk).

For example πj = πl and πk,πm or πj = πm and πk,πn.
This implies that a Network Element Connection can only be bound

to Network Element Interfaces if the interfaces are present on the
Network Elements to which Network Element Connection connects.

An example of the Network Element Interfaces T for the Small In-
ternet example is given in Table C.2, and an example of the Network
Element Interface Bindings B for the Small Internet example is given
in Table C.3.

logical to interface association This can be handled as a
special case of the labels discussed in Section D.1.4. This can be han-
dled by extending the label setting functions using utility functions

SET_ASSOCIATED_NEI(τi, τj)

to associate τj on τi, and

GET_ASSOCIATED_NEI(τi)

to get the associated Network Element Interface on τi.

Identifiers

Network Elements and Network Element Interfaces have a unique
identifier, which can be implemented as a special case of labelling.
This identifier allows the Network Element and Network Element
Interface to be accessed across Network Views.

Network Element Connection don’t have a unique identifier, and
can be referred by its endpoints, such as by the Network Elements.
Optionally they can also be referred to by their Network Element
Interfaces. This is shown in the functions in
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d.1.4 Label Implementation

Label Sets

We now define the set of Labels, L which form part of the Network
View θ = (Π,E, T ,B,L).

L has four components, L = (LΘ,LΠ,LE,LT ) defined as:

• LΘ is the set of labels for the Network View itself

• LΠ is the set of labels for Network Elements

• LE is the set of labels for Network Element Connections

• LT is the set of labels for Network Element Interfaces

network view labels The set of Network View Labels is a set
of tuple of key-value pairs, LΘ = (k1, v1), (k2, v2), (k3, v3), . . . where
ki is a key (the label) and vi is the value for that label.

network element labels The set of labels for Network Ele-
ments, Network Element Connections, and Network Element Inter-
faces could be represented in two ways: grouping by label and then
by the element, or grouping by element and then the labels. We
choose the latter as this aligns more closely to how the system would
be implemented in a programming language. In a programming
language, a typical approach would be to represent the element labels
using a hash-map or dictionary of key-value pairs.

Therefore, we define LΠ, the set of labels for Network Elements as
LΠ = (π1, lpi1), (π2, lpi2), (π3, lpi3), . . . where lπk is the set of label
key-value pairs for Network Element πk.

I.e. lπk = (k1, v1), (k2, v2), (k3, v3), . . ..
An example of the Network Element Labels LΠ for the Small Inter-

net example is given in Figure C.4.

network element connection labels Similarly, we define
LE, the set of labels for Network Element Connections as

LE = (ε1, lε1), (ε2, lε2), (ε3, lε3), . . .

where lεk is the set of label key-value pairs for Network Element
Connection εk.

network element interface labels Finally, we define LT ,
the set of labels for Network Element Interfaces as

LT = (τ1, ltau1), (τ2, ltau2), (τ3, ltau3), . . .
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where lτk is the set of label key-value pairs for Network Element
Interface τk.

The label values are typically single integers or letters, but this
is not a constraint. It is possible to have labels, where the values are
key-value pairs. This can be used for instance to represent IP Address
block allocations on the IP Address Network View. An example of the
Network Element Labels, showing the Loopback IP addresses for the
IP Address Network View of E the Small Internet example is given in
Table C.4.

Label Access Functions

We define a series of label access functions which are used to return
a specific label for a specific element. We define these labels access
functions as λ with a label access function for each set of labels in L.
Therefore λ = (λθ, λΠ, λE, λT ) where

• λθ is the label access function for the Network View

• λΠ is the label access function for the Network Elements

• λE is the label access function for the Network Element Connec-
tions

• λT is the label access function for the Network Element Inter-
faces We now define each of these functions for accessing labels.
We describe the setting of labels in Section D.2.8.

network view label access functions The Network View
Label Access Function λθ is defined as λθ(l) where l is the label to be
returned.

An example is λθ(color) which may return the value blue.

network element label access functions The Network
Element Label Access Function λΠ is defined as λΠ(πi, l) where πi is
the Network Element that we wish to access label l of.

An example is λΠ(θphysical,π1, asn), which for the Simplified Small
Internet Example was described in Section 4.5 would return 1, the
ASN of Network Element 1.
λΠ(π2, asn) would return 20, the ASN of Network Element 2, and

λΠ(π9, asn) would return 100, the ASN of Network Element 9.

network element connection label access functions The
Network Element Connection Label Access Function λE is defined as
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λE(εi, l) where εi is the Network Element Connection that we wish
to access label l of.

network element interface label access functions The
Network Element Connection Label Access Function λT is defined as
λT (τi, l) where τi is the Network Element Interfaces that we wish to
access label l of.

Pass-Through Labels

Some labels are common between Network Views. We call these Pass-
Through Labels. These are stored on the Abstract Network Model itself,
rather than on an individual Network View. Examples of these Pass-
Through Labels include the asn and device_type attributes.

Shortcut Functions

Shortcut functions are functions defined to simplify the syntax. They
can be viewed in a similar fashion to syntactic sugar in programming
languages. We present these here.

role We can define a role function, ρ, for each of Network Ele-
ments, Network Element Connections, and Network Element Inter-
faces:

• ρΠ(πi) = λΠ(πi, role) to access the role of Network Element πi.

• ρE(εi) = λE(εi, role) to access the role of Network Element
Connection εi.

• ρT (τi) = λT (τi, role) to access the role of Network Element
Interface τi.

asn We can define an alias function for accessing the ASN label of
a Network Element. λASN(Θ,πi) = λΠ(Θ,πi, asn) is the ASN Label
Access Function. This does not need a subscript as the ASN label only
has meaning on the set of Network Elements. This label is stored on
the Abstract Network Model Θ, not on a Network View.
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Network Element Groups

Some labels conceptually apply to groups of Network Elements. Our
approach does not have Network Element groups as a structural
component. Groups can be inferred by one or more labels on the
Network Elements, during the Network View design process.

If a user wants to think of Network Elements as being part of a
group, they would need to form the group based on the labels on the
Network Elements.

There are situations however, where a user would want to store
information that is associated with a group of Network Elements
that have the same label set. One way to do this would be to repeat
the same stored information on each Network Element that has the
identical set of labels, but this would add unnecessary repetition.

An alternative to repetition is to use the unique set of labels that
determine the grouping as the unique key in a hash-map.

An example is the IP Address block allocated to an ASN, which
may be used in eBGP route advertisement at the border routers of an
ASN.

There are two approaches to this. The first is storing a hash-map
indexed by the label on the Network View itself, such as shown in
Listing D.1. The second is forming an Intermediate Network View,
with Pseudo-Nodes corresponding to the label, such as shown in
Figure D.1.

{
1: "10.0.1.0/24", 20: "10.0.2.0/24",
20: "10.0.3.0/24", 30: "10.0.4.0/24",
40: "10.0.5.0/24", 100: "10.0.6.0/24",
200: "10.0.7.0/24", 300: "10.0.8.0/24",

}

Listing D.1: Example of grouping for IP Addresses

In our solution we use the first approach.

d.1.5 Abstract Network Model

The Abstract Network Model is the set of all Network Views. A
Network View is defined as θ = (Π,E, T ,B,L). A generalised Network
View is then θi = (Πi,Ei, Ti,Bi,Li). This then allows us to define
multiple Network Views, θ1, θ2, θ3, . . .. The Abstract Network Model
is then this set of all Network Views, Θ = θ1, θ2, θ3, . . .. We can name
a Network View using subscript notation, such as θphysical, θospf,
etc.
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20
10.0.2.0/24

40
10.0.4.0/24

100
10.0.5.0/24

300
10.0.7.0/24

200
10.0.6.0/24

30
10.0.3.0/24

1
10.0.1.0/24

Figure D.1: Labels on Pseudo Network Elements representing Groups of
Network Elements

d.1.6 Shortcut functions for Network Views

For notational convenience, we define the following shortcut func-
tions to assist in explaining the Low-Level Primitives.

• Π(θi) which returns Π, the set of Network Elements, for a given
Network View θi.

• E(θi) which returns E, the set of Network Element Connections,
for a given Network View θi.

• T(θi) which returns T , the set of Network Element Interfaces,
for a given Network View θi.

In the following sections we define some utility functions that give
us information about the Network Elements, Network Element Con-
nections, and Network Element Interfaces of Network Views.
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d.2 low-level primitives

d.2.1 Introduction

In Section D.1.6 we presented the design details for a number of Low-
Level Primitives which can be used to retrieve elements or properties
from a Network Whiteboard or Network View. These are read-only
Low-Level Primitives.

In this section we present the design details for Low-Level Primi-
tives that can create a Network View.

Design Function

High-Level 
Primitive

High-Level Primitive

Low-Level 
Primitive

Low-Level 
Primitive

Verification 
Function

Optimisation 
FunctionANM ANM*

There are are four types of Low-Level Primitives used to create
Network Views.

The first type creates individual Network Elements, Network Ele-
ment Connections, and Network Element Interfaces.

The second types adds to the set of Network Elements, Network
Element Connections, and Network Element Interfaces, for a given
Network View. This could be adding a newly created element, or
copying an element from the Network Whiteboard, or a different
Network View.

The third type removes an element from the set of Network Ele-
ments, Network Element Connections, and Network Element Inter-
faces, for a given Network View. The removal type of Low-Level
Primitive can used to prune a Network View after creation.

The final type manipulates labels for each of Network Elements, Net-
work Element Connections, and Network Element Interfaces, and for
labels on the Network Views themselves.

d.2.2 Low-Level Primitives of Network Elements

We now define some utility functions that give us information about
the Network Elements.
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Network Element Connections for Network Element

The Network Element Connections of a given Network Element is the
set of all Network Element Connections which have a connection to
the given Network Element.

In graph theory, this is the set of all edges incident to the node.
An example of nec_for_ne for Network Element 4 in the Physical

Network View of the Small Internet example is shown in Figure D.2.
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Figure D.2: nec_for_ne for Network Element 4

Degree

The degree of a Network Element is defined as the number of Net-
work Element Connections for that Network Element. This corre-
sponds directly to the degree concept in graph theory.

An example of degree of Network Element 4 in the Physical Network
View of the Small Internet example would be 4.

Presence

The Presence function is a boolean function, which returns True if a
given Network Element is present in a given Network View.

The use of this function allows us to omit Network Elements from
Network Views if they are not required, which can simplify Design
Functions discussed in Chapter 5 and the compilation functions dis-
cussed in Chapter 6.

For instance, Network Elements with the role of server may not be
present in the eBGP Network View. The presence function allows
these to be filtered out.
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Neighbour Network Elements for Network Element

The Neighbour Network Elements for a given Network Element is
defined as the set of all Network Elements ofwhich have a Network
Element Connection to that Network Element.

Informally it is the set of all Network Elements connected to the
given Network Element.

An example of neigh_ne for Network Element 4 in the Physical
Network View of the Small Internet example is shown in Figure D.3.
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Figure D.3: neigh_ne for Network Element 4

Neighbour Network Element Interfaces for Network Element

The Neighbour Network Element Interfaces for a given Network Ele-
ment is the set of all Network Element Interfaces in the given Network
View that satisfy both of the following conditions:

• the Network Element Interface is bound to a Network Element
Connection, which in turn is bound to a Network Element In-
terface of the given Network Element.

• the Network Element Interface does not belong to the given
Network Element.

Informally, this is the set of all remote Network Element Interfaces
connected to this Network Element.

An example of neigh_nei_ne for Network Element 4 in the Physical
Network View of the Small Internet example is shown in Figure D.4.

Network Element Interfaces

The Network Element Interfaces for a given Network Element is the
set of all Network Element Interfaces that belong to this Network
Element.
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Figure D.4: neigh_nei_ne for Network Element 4

This set is frequently used for iteration over the interfaces of a node.
An example of nei_for_ne for Network Element 4 in the Physical

Network View of the Small Internet example is shown in Figure D.14.
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Figure D.5: nei_for_ne for Network Element 4

Equality

The equality function is used to compare if two Network Elements
are equal across Network Views. This compares the Network Element
Identifier for both Network Elements, and returns True if they are
equal. This can be used to check that two Network Elements, in
different Network Views, refer to the same device.

Comparison and Sorting

We define an ordering function for an unordered set of elements,
through the use of a sorting key operator, which maps a Network
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Element to a unique value that can be used for sorting the set of
elements.

This is used to order a set of Network Elements. This is used for
instance in returning the (a,b) Network Elements from a Network El-
ement Connection, since the Network Element Connection is defined
as an unordered pair of Network Elements εi = {u, v} = {v,u}.

We define a Sort Key function sort_key that is used to sort Net-
work Elements. We then use this to define a sorting function

sort({λ1, λ2, λ3, . . .}

which returns a sequence

〈λi, λi+1, λi+2, . . .)〉

such that

sort_key(lambdai) < sort_key(lambdai+1)

for each pair.
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d.2.3 Low-Level Primitives of Network Element Connections

We now define some utility functions that give us information about
the Network Element Connections.

Network Elements for Network Element Connection

This Low-Level Primitive returns the Network Elements connected by
a given Network Element Connection. An example of ne_for_nec

for a given Network Element Connection (highlighted in the figure)
in the Physical Network View of the Small Internet example is shown
in Figure D.6.
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Figure D.6: ne_for_nec result highlighted for Network Element 4

Network Element Interfaces for Network Element Connection

This Low-Level Primitive returns the Network Element Interfaces
connected by a given Network Element Connection. An example of
nei_for_nec for a given Network Element Connection (highlighted
in the figure) in the Physical Network View of the Small Internet
example is shown in Figure D.7.

Ordered Network Elements for Network Element Connection

Since our base graph is undirected, a Network Element Connection is
defined as an unordered pair of (u, v, δ), we define a pair of functions
that consistently return the same Network Element u or v, for the
same Network Element Connection, ε, and δ is a unique distinguisher
between Network Element Connections of the same {u, v} pair (i.e for
parallel Network Element Connections).

For notational convenience, we define the following functions:
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Figure D.7: nei_for_nec for the highlighted Network Element Connection

• Πu(εi) which returns the u Network Element for the Network
Element Connection εi

• Πv(εi) which returns the v Network Element for the Network
Element Connection εi.

Note that Network Element Connections are defined as an un-
ordered pair of Network Elements. This simplifies the creation and
comparison, particularly for the High-Level Primitives.

The Πu and Πv functions are therefore as shown in the pseudocode
example in Algorithm E.21.

Other Network Element

This Low-Level Primitive returns the other Network Element for a
given Network Element, and Network Element Connection. An ex-
ample of nec_other_ne for a given Network Element Connection
(highlighted in the figure), and Network Element 2 in the Physical
Network View of the Small Internet example is shown in Figure D.8.

Other Network Element Interface

This Low-Level Primitive returns the other Network Element Inter-
face for a given Network Element Interface and Network Element
Connection.
other(e, (u, tu)) returns \\) returns \\)
An example of nec_other_nei for a given Network Element Con-

nection (highlighted in the figure), and Network Element Interface
a of Network Element 2 in the Physical Network View of the Small
Internet example is shown in Figure D.9.
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Figure D.8: nec_other_ne for the highlighted Network Element Connec-
tion and Network Element 2
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Figure D.9: nec_other_nei for the highlighted Network Element Connec-
tion and Network Element Interface b of Network Element 2
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Distinguisher Function

To distinguish parallel Network Element Connections, each Network
Element Connection also has an index. For visual clarity, if a Network
View does not have any parallel Network Element Connections, then
the distinguisher may be omitted from the figure. Parallel Network
connections are shown in the diagram below in Figure D.10.

r1 r2

aa

sw1 r3

b

b a

a

cc

bb

c b

1

2

3

1

2

1

Figure D.10: Parallel Network Element Connections. Network Element
Connection Distinguishers are shown by the italicised numbers
above each parallel Network Element Connection.

We define an Network Element Connection Index Access function
Eδ(εi) which returns the index for Network Element Connection εi.

Network Element Connection by Network Element endpoints

This Low-level Primitive returns the set of Network Element Connec-
tions for a given pair of Network Elements. An example of nec_by_ne_ne

for Network Elements 1 and 2 in the Physical Network View of the
Small Internet example is shown in Figure D.11.

Parallel Network Element Connections

The Parallel Network Element Connections for a given Network Ele-
ment Connection is defined as the set of all Network Element Con-
nections in the given Network View, which connect the same pair of
Network Elements.

It should be noted that the Parallel Network Element Connections
are defined in terms of the Network Element pairs, not their Network
Element Interface Bindings. This is because it is more common to
have parallel connections between a node pair, such as two physical
links between the same set of devices. However it is rare to have par-
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Figure D.11: nec_by_ne_ne for the Network Elements 1 and 2

allel connections with the same Network Element Interface Bindings.
The set of Network Element Connections sharing the same pair of
Network Element Interfaces can be found by further refining the set
of Parallel Network Element Connections.
(NEsrc,NEIsrc,NEdst,NEIdst)
Detailed pseudocode for this example is found in Algorithm E.25.

Is Parallel

This Low-Level Primitive returns a boolean value depending on whether
the given Network Element Connection has parallel Network Element
Connections. A Network Element Connection is defined as Parallel if
there exists at least one other Network Element Connection that con-
nects the same pair of Network Elements. An example pseudocode
definition is provided in Algorithm E.26.

For the Network View shown in Figure D.10, the results for is_parallel

is as follows in Table D.2.
Similarly, we can define is parallel for a Network View if it contains

at least one parallel Network Element Connection.

Table D.2: Return values for is_parallel for topology shown in Figure D.10

πi πj δ is_parallel(πi,πj, δ)

r1 r2 1 True

r1 r2 2 True

r1 r2 3 True

r1 sw1 1 False

sw1 r3 1 True

sw1 r3 2 True
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Equality

This primitive determines if two Network Element Connections are
equivalent. Order is not important in determining equality. We
consider two Network Element Connections to be equivalent if they
connect the same pair of Network Element Connections. If there
are parallel Network Element Connections in a Network View, then
this can be represented using a Multigraph. For this case, we use
the NetworkX Python Library [93] approach to compare, where we
compare the Network Element at each end of the Network Element
Connection, and the Network Element Connection distinguisher.
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d.2.4 Low-Level Primitives of Network Element Interfaces

We now define some utility functions that give us information about
the Network Element Interfaces.

Network Element Interface by Network Element Connection and Network
Element

To determine the Network Element Interface, based on the Network
Element and the Network Element Connection, this primitive can be
used.

The binding access Low-Level Primitive is called nei_by_nec_ne(εi,πj).
It return the Network Element Interface τk which is bound for the
Network Element pij on Network Element Connection εi.

For instance for the Simplified Small Internet Example, as shown
in Table C.3, for ε1, the Network Element Connection between 1

and 2, nei_by_nec_ne(ε1, pi1) would return π1, τa, as shown in
Figure D.12. nei_by_nec_ne(ε1,π2) would return π2, τa.

For another Network Element Connection, ε2, between 1 and 6,
nei_by_nec_ne(ε2,π1) would return τc and nei_by_nec_ne(ε2,π6)
would return τa.
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Figure D.12: nei_by_nec_ne for the highlighted Network Element Connec-
tion and Network Element 2

Network Element Connection for Network Element Interface

This primitive returns all the Network Element Connections associ-
ated with a particular Network Element Interface. The formal of this
query is provided in the pseudo-code example in Algorithm E.28.

An example of nec_for_nei for Network Element Interface b of Net-
work Element 4 the Physical Network View of the Small Internet exam-

370



D.2 low-level primitives

ple is shown in Figure D.13. This example is also valid for Network
Element Interface b of Network Element 6
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Figure D.13: nec_for_nei for Network Element Interface b of Network
Element 4

Ordered Network Element Interface for Network Element Connection

• Tu(εi) which returns the Network Element Interface that is bound
for Network Element u in the Network Element Connection
εi = {u, v}

• Tv(εi) which returns the Network Element Interface that is bound
for Network Element v in the Network Element Connection
εi = {u, v}

The Tu and Tv functions are therefore as shown in the pseudocode
example in Algorithm E.29.

Network Element Interfaces From Network Element

The BΠ(θi,πj) Low-Level Primitive returns all Network Element In-
terfaces for πj in thetai. This is shown in the pseudo-code example
in Algorithm E.30. An example of nei_by_ne for Network Element 4
of the Physical Network View of the Small Internet example is shown
in Figure D.14.

Degree

The degree Low-Level Primitive for a Network Element Interface is
defined as the number of Network Element Connections bound to
the Network Element Interface.
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Figure D.14: nei_by_ne for Network Element 4

For each of the Network Views shown in the Small Internet ex-
ample, the Network Element Interface degree is 1. An example
definition shown in the pseudocode example in Algorithm E.31.

Is Bound

This is a boolean Low-Level Primitive that can be used to check if
a Network Element Interface is attached to any Network Element
Connections.

This is simply a simple test if the degree of a Network Element
Interface is greater than zero.

An example pseudo-code definition is provided in Algorithm E.32.

Parent Network Element

This Low-Level Primitive returns the Network Element for a given
Network Element Interface. As Network Element Interfaces are re-
ferred to as a tuple of (Network Element, Network Element Interface
identifier), this returns the Network Element referred to in the first
part of the tuple.

Neighbour Network Element Interfaces for Network Element Interface

The Neighboring Network Element Interfaces for a given Network
Element Interface, is defined as the set of of all Network Element
Interfaces which share a Network Element Connection to the given
Network Element Interface. Informally, it is the Interfaces which are
connected to the Interface. An example of neigh_nei_for_nei for
Network Element Interface a of Network Element 2 the Physical Network
View of the Small Internet example is shown in Figure D.15.
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Figure D.15: neigh_nei_for_nei for Network Element Interface a of Net-
work Element 2

Neighbour Network Elements for Network Element Interface

This is defined from the neighbor Network Element Interface and
the Network Element Interface function on the λi of the (lambda, tau)
pair for the Network Element Interface. An example of neigh_ne_for_nei

for Network Element Interface a of Network Element 2 the Physical Net-
work View of the Small Internet example is shown in Figure D.16.
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Figure D.16: neigh_ne_for_nei for Network Element Interface a of Net-
work Element 2

Network Element Connections

This Low-Level Primitive returns the Network Element Connections
to which a Network Element Interface is bound. Typically this would
be a single Network Element Connection per Network Element In-
terface, but this is not always the case. For instance, in higher-level
protocol views, such as OSPF, created from exploding devices such
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as hubs or switches at lower layers, a Network Element Interface may
have multiple Network Element Connections, representing a multi-
point protocol interface.

An example of nec_for_nei for Network Element Interface a of Net-
work Element 2 of the Physical Network View of the Small Internet
example is shown in Figure D.17. Note that this example would also
be valid for Network Element Interface a of Network Element 1.
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Figure D.17: nec_for_nei for Network Element Interface a of Network
Element 2
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d.2.5 Creation

These functions create a new Network Element, Network Element
Connection, or Network Element Interface.

Indices

These functions are used internally for the addition function, to uniquely
identify an element.

Recall Π = {π1,π2,π3, . . .}.
The index function for a given element, πi, εj or τk returns the i

value for a given set element.

• indexΠ(πi) returns i for πi.

• indexE(εi) returns i for εi.

• indexT (τi) returns i for τi.

We can then define the indices function for a set of elements:

• indicesΠ(θi) = {(indexΠ(πj)∀πj ∈ Π(θi)}

• indicesE(θi) = {(indexE(εj)∀εj ∈ E(θi)}

• indicesT (Πi,πj) = {(indexT (τk)∀τk ∈ BΠ(θi,πj)}

These can also be defined by looking at the ANM labels for Pi and
Tau.

Creation Primitives

Table D.3: Summary of create Low-Level Primitives

Function Pseudo-Code Description

create_θ(Θ) Creates a Network View θi within
set Abstract Network Model Θ

create_π(Π) Creates a Network Element πi
within set of Network Elements Π

create_ε(E) Creates a Network Element
Connection εi within set of
Network Element Connections E

create_τ_π(T) Creates a Network Element
Interface within set of Network
Element Interfaces T
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d.2.6 Add Primitives

Once an element has been created then it can be added to the set of
elements making up the Network View. This is typically done in a
single step using a High-Level Primitive.

For each of the elements that can be created using the primitives
in the previous section, we have an add primitive. These functions
are described in more detail in Appendix F, and are summarised in
Table D.4.

Once an element has been created then it can be added to the set
of elements making up the Network View. This is typically done in a
single step using a High-Level Primitive.

For each of the elements that can be created using the primitives
in the previous section, we have an add primitive. These functions
are described in more detail in Appendix E and are summarised in
Table D.4.

Table D.4: Summary of add Low-Level Primitives

Function Pseudo-Code Description

add_π(Π,πi) Algo-
rithm E.35

Adds Network Element π to
Network View

next_nec_δ(θi,πi,πj) Algo-
rithm E.35

Obtains next free distinguisher δ
for Network Element pair πi,πj.

add_ε(πi,πi, δ) Algo-
rithm E.37

Adds Network Element
Connection ε to Network View

add_b(B, εi) Algo-
rithm E.38

Adds Network Element Binding
B to Network Element
Connection εi

add_πt(T ,πi) Algo-
rithm E.39)

Adds Network Element
Interface to Network Element
Interface Set T on Network
Element πi

set_binding(B, εi,πj, τk)Algo-
rithm E.41

Binds Network Element
Interface τk for Network
Element πj on Network Element
Connection εi
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d.2.7 Remove Primitives

Occasionally we need to remove an element from a Network View
after they have been created. In some situations a Network View can
be generated by bulk addition of Network Elements and then pruning
of some elements. This motivates the need for the removal primitives.

There are a series of low-level “internal” removal functions that
remove a given element from a given set. There are a series of
high-level primitives that are composed of these low-level internal
functions but maintain structural integrity and perform clean-up of
unused elements for consistency. These are summarised in Table D.5.

Table D.5: Summary of remove Low-Level Primitives

Function Pseudo-Code Description

remove_π(Π,πi) Removes Network Element πi
from set of Network Elements Π

remove_ε(E, εi) Removes Network Element εi
from set of Network Element
Connections E

remove_τ_π(T ,πi) Removes Network Element
Interface set for Network Element
πi from set of Network Element
Interfaces T on Network View.

remove_b(B, εi) Removes Network Element
Connection εi from set of Network
Element Bindings B

remove_τ_τ(πi, τj) Removes Network Element
Interface τj from set of Network
Element Interfaces on Network
Element πi
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d.2.8 Label Primitives

When we create a Network View we need to create placeholders to
store the labels, which are empty sets. Once the empty set is created,
the labels are inserted. We also have remove function. These are
shown in the Table D.6 and Table D.7. The set function for labels is
used to store a specific value for a given label key. The set labels
Low-Level Primitives are shown in Algorithm E.65.

Table D.6: Summary of initialise label Low-Level Primitives

Function Pseudo-Code Description

add_l_π(L,πi) Algorithm E.49 Initialises label set for Network
Element πi in Network View Label
set L.

add_l_ε(L, εi) Algorithm E.48 Initialises label set for Network
Element Connection εi in Network
View Label set L.

add_l_t_π(L,πi) Algorithm E.50 Initialises label set for Network
Element Interfaces for Network
Element πi in Network View Label
set L.

add_l_t_τ(L,πi, τj) Algorithm E.51 Initialises label set for Network
Element Interfaces τj in Network
Element Interfaces label set for
Network Element πi in Network
View Label set L.

d.2.9 Conclusion

In this section we have outlined a number of Low-Level Primitives
that obtain properties of or modify Network Views. These include
creation of the Network View, adding elements to the Network View
including Network Elements and Network Element Connections.

Network element interfaces are a requirement of Network Element
Connections, and can either be created as logical Network Element
Interfaces, or the physical Network Element Interfaces can be used,
as the termination point of a Network Element Connection.

We also discussed how labels are added on these elements, and
can be modified, in order to represent network configuration proper-
ties, that are then used in the compilers to generate device specific
configurations.
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Table D.7: Summary of remove label Low-Level Primitives

Function Pseudo-Code Description

remove_l_π(L,πi) Algo-
rithm E.52

Removes label set for Network
Element πi in Network View
Label set L.

remove_l_ε(L, εi) Algo-
rithm E.55

Removes label set for Network
Element Connection εi in
Network View Label set L.

remove_l_τ_π(L,πi, τj) Algo-
rithm E.53

Removes label set for Network
Element Interfaces for Network
Element πi in Network View
Label set L.

remove_l_τ_τ(L,πi, τj) Algo-
rithm E.54

Removes label set for Network
Element Interfaces τj in Network
Element Interfaces label set for
Network Element πi in Network
View Label set L.

In the next section we show how these Low-Level Primitives are
assembled into High-Level Primitives.

d.3 high-level primitives

d.3.1 Create Skeleton Network View

A Network View is created in stages. The first stage is to create a
skeleton, which is a placeholder for the remaining elements. In this
step, we apply the create theta, which is an empty set of elements
such as Network Elements, Network Element Connections, and labels.
An important part contained in the theta placeholder is an empty
label set.

d.3.2 Network Element High-Level Primitives

This High-Level Primitive adds the given Network Element to the
set of Network Elements for the given Network View. It also creates
the set of Network Element Interfaces for the Network Element, in the
Network View, and the set of Labels for the Network Element and the
Network Element Interfaces of the Network Element, on the Network
View. Finally, it will set a role label for the Network Element, such as
router or switch. This High-Level Primitive is used by both the Copy
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Network Element, and Create Pseudo Network Element Primitives,
discussed in the next section.

Copy Network Element

This High-Level Primitive copies a given Network Element from one
Network View to another. In addition to copying the Network Ele-
ment, the appropriate set for Network Element Interfaces of the Net-
work Element, and labels for the Network Element and it’s Network
Element Interfaces, are also created on the target Network View.

Create Pseudo Network Element

This High-Level Primitive creates a new Pseudo Network Element.
Pseudo Network Elements do not correspond to physical devices, but
are used to help in the representation of network policy and network
concepts.

d.3.3 Network Element Interface High-Level Primitives

Add Network Element Interface

Network Element Interfaces are used to represent the termination
point of a Network Element Connection on a Network Element. This
High-Level Primitive creates adds and copies Network Element Inter-
faces.

create logical network element interface In addition
to physical interfaces, Network Views can contain Logical Network
Element Interfaces, which are analogous to Pseudo-Nodes. These
can include loopback interfaces.

Copy Network Element Interface

note that physical and lo0 are automatically copied across interfaces
For logical interfaces

Create Logical Network Element Interface

Cannot create a Network Element (as represents physical Network
Element from Network Whiteboard), but can create Pseudo Network
Element

Step 1: find identifier that’s not used in any NV Step 2: create
new Pseudo Network Element, p, with this identifier Step 3: return
(Network View, p)
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Set Network Element Interface Binding

Network Element Connections are bound to Network Element Inter-
faces. There are High-Level Primitives to do this.

d.3.4 Network Element Connection High-Level Primitives

High-Level Primitives exist for adding, copying and removing Net-
work Element Connections.

d.3.5 Set Label High-Level Primitives

This High-Level Primitive is responsible for storing a label for a given
key.

d.3.6 Removal

The removal High-Level Primitives take care of removing the entities
from the Network View in a safe way so that the Network View
maintains its structural integrity after the removal has taken place.

For example, to remove a Network Element Interface, we need to
perform the following steps. The first step is to remove the Network
Element Interface from the set of Network Element Interfaces, T. The
next step is to unbind the Network Element Interface from the Net-
work Element Connection. Finally, the Network Element Interface is
removed from the set of labels for Network Element Interfaces.
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e.1 low-level primitive definitions for chapter 4

Algorithm E.18 Definition for EΠ Low-level Primitive
function EΠ((θi,πj))
Y{εi∀εi ∈ E(θi) | πj ∈ EΠ(εi)}
return Y

end function

Algorithm E.19 Definition for degree_Π Low-level Primitive
function DegreeΠ((θi,πj))
Y ← EΠ(θi,πj, τk) . Network Element Connections for this

Network Element
return |Y|

end function

Algorithm E.20 Definition for ΠE Low-level Primitive
function ΠE(θi, εj = ({λi, λj},distinguisher))

return {λi, λj}
end function
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Algorithm E.21 Definition for Πu and Πv Low-level Primitives
function Πu(θi, εi)
X← ΠE(θi, εi) . NEs {u, v}
S← sort(X)

return S1 . Return first sorted element
end function
function Πv(θi, εi)
X← ΠE(θi, εi) . NEs {u, v}
S← sort(X)

return S2 . Return second sorted element
end function

Algorithm E.22 Definition for otherΠ Low-level Primitive
function otherΠ(θi, εj,πk)
u← Πu(θi, εj)
v← Πv(θi, εj)
if u = πk then
return v

else
return u

end if
end function

Algorithm E.23 Definition for otherT Low-level Primitive
function otherT (θi, εj,πk, τl)
πv ← otherΠ(θi, εj,πk) . Other NE
τv ← ET (θi, εj,πv) . NEI binding in NEC for other NE
return (πv, τv)

end function

Algorithm E.24 Definition for nec_by_endpoints Low-level Primitive
function NEC_by_NE_NE(θi,πj,πk)
X← EΠ(πj)∩ EΠ(πk) . All NECs incident to both NE

endpoints
return X

end function
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Algorithm E.25 Definition for parallel Low-level Primitive
function parallel(θi, εj)
X← Π(εj) . NEs for εj
Y1 ← (E(θi)) . All NECs for NV θi

Y2 ← {(ε∀ε ∈ Y1 | Π(ε) ∈ X} . NECs incident to NEs of εj
Y3 ← Y2 − {εj} . Remove εj from set
return Y

end function

Algorithm E.26 Definition for is_parallel_e Low-level Primitive
function is_parallel_e(θi, εj)
Y ← parallel(θi, εj)
if |Y| > 0 then
return True

else
return True

end if
end function

Algorithm E.27 Definition for ET Low-level Primitive
function ET ((θi = (Π,E, T ,B,L), εj,πk))
bindings← get_by_key(B, εj) . Bindings for this NEC
τl ← get_by_key(bindings,πk)
return (πk, τl)

end function

Algorithm E.28 Definition for ET Low-level Primitive
function NEI_NEC((λi,πj, τk))
Y ← E(λi) . Network Element Connections for λi
Y ′ ← {(εi∀εi ∈ Y|NEC_NEI(εi,πj) = τk} . Filter to only

Network Element Connections bound to τk for πj
return Y ′

end function
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Algorithm E.29 Definition for Tu and Tv Low-level Primitives
function Tu(εi)
πu ← Π_u(εi) . First NE for NEC
x← ET (θi, εj,πu) . Bound NEI for first NE
return x

end function
function Tv(εi)
πv ← Π_v(εi) . First NE for NEC
x← ET (θi, εj,πv) . Bound NEI for second NE
return x

end function

Algorithm E.30 Definition for Bπ Low-level Primitive
function Bπ(εi,πj)
X← get_by_key(B(θi,πj)) . Set of NEI for NE
Y = {(πj, τk) ∀ τj ∈ X}
return Y

end function

Algorithm E.31 Definition for DegreeT Low-level Primitive
function DegreeT ((θi,πj, τk))
Y ← NEC_NEI(θi,πj, τk) . Network Element Connections for

this Network Element Interface
return |Y|

end function

Algorithm E.32 Definition for T_is_bound Low-level Primitive
function E_is_bound(θi,πj, τk)
Y ← DegreeT (θi,πj, τk)
if |Y| > 0 then
return True

else
return True

end if
end function
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e.2 low-level primitive definitions for chapter 5

e.2.1 Add Primitives

Algorithm E.33 Definition for createθ Low-Level Primitive
function createθ(Θ, name)
Θ← Θ∪ θname
return θname

end function

Algorithm E.34 Definition for add_π Low-Level Primitive
function create_π((Π)

return Π ′ = Π∩ {πi}
end function

Algorithm E.35 Definition for add_π Low-Level Primitive
function add_π(Π,πi)

return Π ′ = Π∪ {πi}
end function

Algorithm E.36 Definition for next_nec_δ Low-Level Primitive
function next_nec_δ(θi,πi,πj)
E← NEC_by_NE_NE(θi,πi,πj) . NECs for this (NE, NE) pair
D← {Eδ(εi) ∀ εi ∈ E} . distinguishers on these NECs
for z ∈ Z do

if z /∈ D then . The next free distinguisher
δ← z return δ

end if
end for

end function

Algorithm E.37 Definition for add_ε Low-Level Primitive
function add_ε(E, εi = (πi,πi, δ))

return E ′ = E∪ {εi}
end function
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Algorithm E.38 Definition for add_b Low-Level Primitive
function add_b(B, εi)

return B ′ = B∪ {(εi,∅)} . Add and create empty set for NEI
bindings
end function

Algorithm E.39 Definition for add_π_t Low-Level Primitive
function add_π_t(T ,πi)
T ′ ← T ∪ {(πi,∅)} . Add with empty NEI set for NE
return T ′

end function

Algorithm E.40 Definition for add_t Low-Level Primitive
function add_t(πi, τj)
Tπi ← get_by_key(T ,πi) . Current NEI set for NE
X ′ ← X∪ {τj} . add τj to NEI set
T ′ ← T − (πi, Tπi) . remove old NEI set for NE
T ′ ← T ′ ∪ (πi,X ′) . Add new NEI set for NE
return T ′

end function

Algorithm E.41 Definition for set_binding Low-Level Primitive
function set_binding(B, εi,πj, τk)
X← get_by_key(B, εi) . Bindings for this NEC
X ′ ← set_by_key(X,πj, τk)
B ′ ← set_by_key(B, εi,X ′)

return B ′

end function

Algorithm E.42 Definition for add_nec_by_ne_ne Low-Level Primi-
tive

function add_nec_by_ne_ne(θi,πi,πj)
τi ← NEC_by_NE_NE(θi,πi,πj)
D← {Eδ(εi) ∀ εi ∈ E}
for z ∈ Z do

if z /∈ D then return z
end if

end for
end function
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e.2.2 Remove Primitives

Algorithm E.43 Definition for remove_π Low-Level Primitive
function remove_π((Π,πi)

return Π ′ = Π− {πi}

end function

Algorithm E.44 Definition for remove_b Low-Level Primitive
function remove_b((B, εi)

return B ′ = B− {(εj, {(πi, τi), (pij, τj)}) ∈ B|εj = epsiloni}
end function

Algorithm E.45 Definition for remove_τ_π Low-Level Primitive
function remove_τ_π(T ,πi)
Tπi = (Πi,X)← {(πj, {τ1, τ2, τ3, . . .} ∈ T |πj = πi} . NEI set for

NE πi
T ′ ← T − Tπi . Remove old NEI set for πi
return T ′

end function

Algorithm E.46 Definition for remove_τ_τ Low-Level Primitive
function remove_τ_τ((πi, τj)
Tπi = (Πi,X)← {(πj, {τ1, τ2, τ3, . . .} ∈ T |πj = πi} . NEI set for

NE πi
X ′ ← X− τj . Remove τj from set of NEI for NE πi
T ′ ← T − Tπi . Remove old NEI set
T ′ ← T ′ ∩ (πi,X ′) . Update with new NEI set
return T ′

end function

Algorithm E.47 Definition for remove_ε Low-Level Primitive
function remove_ε((E, εi)

return E ′ = E− {εi}

end function
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e.2.3 Label Primitives

Algorithm E.48 Definition for add_l_ε Low-Level Primitive
function add_l_ε(L = (LΘ,LΠ,LE,LT ), εi)
L ′E = LE ∪ {(εi,∅)}

return L ′ = (LΘ,LΠ,L ′E,LT )
end function

Algorithm E.49 Definition for add_l_π Low-Level Primitive
function add_l_π(L = (LΘ,LΠ,LE,LT ),πi)
L ′Π = LΠ ∪ {(πi,∅)}

return L ′ = (LΘ,L ′Π,LE,LT )
end function

Algorithm E.50 Definition for add_l_t_π Low-Level Primitive
function add_l_t_π(L = (LΘ,LΠ,LE,LT ),πi)
L ′T ← L ′T ∪ (πi,∅) . Update with new NEI set
return L ′ = (LΘ,LΠ,LE,L ′T )

end function

Algorithm E.51 Definition for add_l_t_τ Low-Level Primitive
function add_l_t_τ(L = (LΘ,LΠ,LE,LT ),πi, τj)
X← get_by_key(LT ,πi) . NEI label set for NE
X ′ ← X∪ {(τj,∅)} . add emtpty label set for τj
L ′T ← LT − LTπi . remove old NEI label set
L ′T ← L ′T ∪ (πi,X ′) . Update with new NEI label set
return L ′ = (LΘ,LΠ,LE,L ′T )

end function

Algorithm E.52 Definition for remove_l_π Low-Level Primitive
function remove_l_π(L = (LΘ,LΠ,LE,LT ),πi)
L ′Π = LΠ − {(πj, lπi ∈ LE|πj = πi}
return L ′ = (LΘ,L ′Π,LE,LT )

end function
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Algorithm E.53 Definition for remove_l_τ_π Low-Level Primitive
function remove_l_τ_π(L = (LΘ,LΠ,LE,LT ),πi, τj)
LTπi = (Πi,X) ← {(πj, {(τ1,Lτ1), (τ2,Lτ2), (τ3Lτ3)), . . .} ∈

LT |πj = πi} . NEI label set for NE πi
L ′T ← LT − LTπi . Remove old NEI set
return L ′ = (LΘ,LΠ,LE,L ′T )

end function

Algorithm E.54 Definition for remove_l_τ_τ Low-Level Primitive
function remove_l_τ_τ(L = (LΘ,LΠ,LE,LT ),πi, τj)
LTπi = (Πi,X) ← {(πj, {(τ1,Lτ1), (τ2,Lτ2), (τ3Lτ3)), . . .} ∈

LT |πj = πi} . NEI label set for NE πi
X ′ ← X− {(τk,Lτk) ∈ X|τk = τi . Remove τj from label set of

NEI for NE πi
L ′T ← LT − LTπi . Remove old NEI set
L ′T ← L ′T ∩ (πi,X ′) . Update with new NEI set
return L ′ = (LΘ,LΠ,LE,L ′T )

end function

Algorithm E.55 Definition for remove_l_ε Low-Level Primitive
function remove_l_ε(L = (LΘ,LΠ,LE,LT ), εi)
L ′E = LE − {(εj, lεi ∈ LE|εj = εi}
return L ′ = (LΘ,LΠ,L ′E,LT )

end function
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Algorithm E.56 Definitions for the set_λ Low-Level Primitives
function set_λ_Θ(LΘ, label, value)
L ′Θ ← set_key(label, value)
return L ′Θ

end function
function set_λ_Π(LΠ,πi, label, value)
X← get_key(LΠ,πi) . Labels for NE
X ′ ← set_key(X, label, value) . Set label to value for NE
L ′Π ← set_key(LΠ,πi,X ′) . Update labels for NE
return L ′Π

end function
function set_λ_E(LE, εi, label, value)
X← get_key(LE, εi) . Labels for NEC
X ′ ← set_key(X, label, value) . Set label to value for NEC
L ′E ← set_key(LE, εi,X ′) . Update labels for NEC
return L ′E

end function
function set_λ_T(LT ,πi, τj, label, value)
X← get_key(LT ,πi) . All NEI labels for NE
Y ← get_key(X, τj) . Labels for NEI in NE
Y ′ ← set_key(Y, label, value) . Set label to value for NEI
X ′ ← set_key(X, τj, Y ′) . Update NEI labels for NE
L ′T ← set_key(LT ,πi,X ′) . Update NEI labels
return L ′T

end function
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e.3 high-level primitive definitions

Algorithm E.57 Definition for grouping High-Level Primitive. Based
on algorithm from NetworkX [76]

function grouping(θi,X, label)
labels← ∅
for x ∈ X do
α← λΠ(θi, x, label)
if α /∈ labels then
labels← labels∪ {α}

end if
end for
group← ∅
for α ∈ labels do
Y ← {x ∈ X | λΠ(θi, x, label) = α}
group← group∪ {(α, Y)}

end for
end function

Algorithm E.58 Definition of boundary_nodes High-Level Primitive
function boundary_nodes(θi,X)
Y ← ∅
for πi ∈ X do
Y ← Y ∪neighbours_π(πi)

end for
Y ← Y −X . Remove nodes inside boundary
return Y

end function

Algorithm E.59 Definition for E_equivalent_Π High-level Primitive
function E_equivalent_Π(θi, εj, label)
u← Πu(θi, εj)
v← Πv(θi, εj)
if λΠ(θi,u, label) = λΠ(θi, v, label) then
return True

else
return False

end if
end function
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Algorithm E.60 Definition for E_equivalent_T High-level Primitive
function E_equivalent_T(θi, εj, label)
u← Tu(θi, εj)
v← Tv(θi, εj)
if λT (θi,u, label) = λT (θi, v, label) then
return True

else
return False

end if
end function

Algorithm E.61 Definition of connected_nodes High-Level Primi-
tive

function connected_nodes(θi)
G← to_graph(θi) return graph_connected_nodes(G)

end function

Algorithm E.62 Definition of Role Access Functions High-Level
Primitives

function Πrouters(θi)
X← {πi ∈ Π(θi) | ρ(πi) = router}
return X

end function
function Πswitches(θi)
X← {πi ∈ Π(θi) | ρ(πi) = switch}
return X

end function
function Πservers(θi)
X← {πi ∈ Π(θi) | ρ(πi) = server}
return X

end function
function Πlayer3(θi)
X← Πservers(θi)∩Πservers(θi)
return X

end function
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Algorithm E.63 Definition of to_graph High-Level Primitive
function to_graph(θi)
X← Π(θi) . Nodes
Y ← {(Πu(ε),Πv(ε)∀εinE(θi)} . Edges
G← (X, Y)
return G

end function

Algorithm E.64 Definition of graph_connected_nodes Function
function graph_connected_nodes(G = (Nodes,Edges))
C← ∅
visited← ∅
for x ∈ Nodes do

if s /∈ visited then
c← bfs(G, x) . Breadth-First Search from x
visited← visited∪ c . Updated visited nodes
C← C∩ {c} . Store set of connected nodes

end if
end for
return C . Return set of sets

end function

Algorithm E.65 Definition for set_label_π High-Level Primitive
function set_label_π(θi = (Πi,Ei, Ti,Bi, (LΘ,LΠ,LE,LT )),πi, label, value)
L ′Π ← set_key(label, value)
return θi = (Πi,Ei, Ti,Bi, (LΘ,LΠ,LE,LT ))

end function
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f.1 ospf example

f.1.1 Setup

import json
from collections import Counter, defaultdict

import autonetkit
import autonetkit.load.graphml as graphml
import netaddr
from autonetkit.ank import copy_attr_from, explode_nodes, groupby, split
from autonetkit.compilers.device import router_base
from jinja2 import Environment, Template
from netaddr import IPNetwork, IPSet

anm = autonetkit.NetworkModel()

with open("ospf .graphml") as fh:
data = fh.read()

input_graph = graphml.load_graphml(data)

nodes = {}
for n, data in input_graph.nodes(data=True):

nodes[n] = {
" id": n,
"asn": data["asn"],
"x": int(data["x"] * 1.2),
"y": int(data["y"] * 1.2),

}

edges = []
for s, t, data in input_graph.edges(data=True):

edges.append((s, t, data.get("src_area"), data.get(
"dst_area"), data.get(" src_cost "), data.get("dst_cost ")))

g_in = anm.add_overlay("input")
for n, d in nodes.items():

g_in.add_node(n, x=d["x"], device_type=" router",
y=d["y"], asn=1)

for edge in edges:
src, dst, src_area, dst_area, src_cost, dst_cost = edge
src = g_in.node(src)
dst = g_in.node(dst)
src_iface = src.add_interface()
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dst_iface = dst.add_interface()

src_iface.set("area", int(src_area))
src_iface.set(" cost ", int(src_cost))
dst_iface.set("area", int(dst_area))
dst_iface.set(" cost ", int(dst_cost))

edge = g_in.add_edge(src_iface, dst_iface)

g_in.allocate_input_interfaces()
autonetkit.update_http(anm)

g_phy = anm[ ’phy’]
g_phy.add_nodes_from(g_in, retain=["asn", "device_type", "x", "y"])
g_phy.update(use_ipv4=True, host=" localhost ",

platform=" netkit ", syntax="quagga")

g_phy.add_edges_from(g_in.edges())
autonetkit.update_http(anm)

g_l2 = anm.add_overlay(" layer2 ")
g_l2.add_nodes_from(g_phy)
g_l2.add_edges_from(g_phy.edges())

# Split the point-to-point edges to add a collision domain
edges_to_split = [edge for edge in g_l2.edges()

if edge.src.is_l3device() and edge.dst.is_l3device()]

for edge in edges_to_split:
edge.split = True # mark as split for use in building nidb

split_created_nodes = split(g_l2, edges_to_split, id_prepend= ’bd_ ’)

for node in split_created_nodes:
# set midway x, y for plot
neighs = node.neighbors()
x = sum(neigh["phy"].get("x") for neigh in neighs) / len(neighs)
y = sum(neigh["phy"].get("y") for neigh in neighs) / len(neighs)
node.set("x", x)
node.set("y", y)

c = Counter(n.get("asn") for n in neighs)
most_common_asn, _ = c.most_common(1)[0]
node.set("asn", most_common_asn)

node.set("broadcast_domain", True)
node.set("device_type", "broadcast_domain")

autonetkit.update_http(anm)

g_l2_conn = anm.add_overlay("layer2_conn")
g_l2_conn.add_nodes_from(g_l2)
g_l2_conn.add_edges_from(g_l2.edges())

bc_nodes = g_l2.nodes(broadcast_domain=True)

explode_nodes(g_l2_conn, bc_nodes)

autonetkit.update_http(anm)

g_ospf = anm.add_overlay("ospf")
g_ospf.add_nodes_from(g_in.routers())
g_ospf.add_edges_from(e for e in g_in.edges()

if e.src.asn == e.dst.asn)

396



F.1 ospf example

for node in g_ospf:
node_areas = set()
node.set("process_id", node.get("asn"))
for interface in node.physical_interfaces():

area = interface["input"].get("area")
node_areas.add(area)
interface.set("area", area)
cost = interface["input"].get(" cost ")
interface.set(" cost ", cost)

lowest_area = sorted(node_areas)[0]
node.loopback_zero.set("area", lowest_area)

autonetkit.update_http(anm)

g_ip = anm.add_overlay(" ip")
g_ip.add_nodes_from(g_l2)
g_ip.add_edges_from(g_l2.edges())

bc_nodes = g_l2.nodes(broadcast_domain=True)

bc_attrs = ["broadcast_domain", "device_type", "asn"]
for attr in bc_attrs:

copy_attr_from(g_l2, g_ip, attr, nbunch=bc_nodes)

# allocate loopback IPs
block = IPNetwork(" 10.0.0.0/16 ")
subnets = block.subnet(24)
loopback_allocations = {}
l3_nodes = g_ip.l3devices()
for asn, nodes in groupby("asn", l3_nodes):

asn_block = subnets.next()
loopback_allocations[asn] = asn_block
hosts = asn_block.iter_hosts()

for node in nodes:
ip = hosts.next()
node.set("loopback", ip)
node.loopback_zero.set(" ip", ip)
node.loopback_zero.set("subnet", IPNetwork(ip))

# allocate infra IPs
block = IPNetwork("192.168.0.0/16 ")
subnets = block.subnet(24)
infra_allocations = {}
bc_nodes = g_ip.nodes(broadcast_domain=True)
for asn, nodes in groupby("asn", bc_nodes):

asn_block = subnets.next()
infra_allocations[asn] = asn_block
ptp_subnets = asn_block.subnet(30)
for node in nodes:

prefix = ptp_subnets.next()
node.set("subnet", prefix)

hosts = prefix.iter_hosts()
for neigh_iface in node.neighbor_interfaces():

address = hosts.next()
neigh_iface.set(" ip", address)
neigh_iface.set("subnet", prefix)
ip_brief = str(address).replace(" 192.168. ", " ")
neigh_iface.set(" ip_brief ", ip_brief)

autonetkit.update_http(anm)

for node in g_ospf:
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asn = node.get("asn")
infra_block = infra_allocations.get(asn, [])
lo_block = loopback_allocations.get(asn, [])
adv_prefixes = IPSet(infra_block)
adv_prefixes.update(lo_block)
node.set("networks", adv_prefixes.iter_cidrs())
node.set("router_id", node[" ip"].loopback_zero.get(" ip"))

Listing F.1: Source code for setup for OSPF configuration example

f.1.2 Device Compilers and Platform Compiler

class simple_router_compiler(object):

def __init__(self, anm, nidb):
self.anm = anm
self.nidb = nidb

def compile(self, node):
interfaces = self.interfaces(node)
ospf = self.ospf(node)
return {

" interfaces ": interfaces,
"ospf": ospf,
"hostname": str(node),

}

def interfaces(self, node):
pass

def ospf(self, node):
pass

Listing F.2: Simple Router Compiler for OSPF configuration example

class simple_quagga_compiler(simple_router_compiler):
loopback_zero_id = " lo :1 " # on linux loopback zero is 127.0.0.1

def interfaces(self, node):
ifaces = []
for interface in self.nidb[" interfaces "].get(node):

int_id = interface.get(" id")
ip = interface.get(" ip")
subnet = interface.get("subnet")
cidr = "%s/%s" % (ip, subnet.prefixlen)
ifaces.append({" cidr ": cidr,

" id": int_id
})

# add lo0
lo0 = self.anm[" ip"].node(node).loopback_zero
ip = lo0.get(" ip")
subnet = lo0.get("subnet")
cidr = "%s/%s" % (ip, subnet.prefixlen)
lo_zero_id = lo0["phy"].get(" id")
ifaces.append({" cidr ": cidr,

" id": lo_zero_id
})

return ifaces

def ospf(self, node):
ospf_node = self.anm["ospf"].node(node)
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process_id = ospf_node.get("process_id")

# now interfaces
networks = []
ospf_interfaces = []
passive_interfaces = []

lo0 = ospf_node.loopback_zero
subnet = lo0[" ip"].get("subnet")
networks.append({

"area": lo0.get("area"),
"network": subnet.cidr

})

passive_interfaces.append({
" id": self.loopback_zero_id,

})

for ospf_int in ospf_node.physical_interfaces():
if not ospf_int.is_bound:

continue

ip_int = ospf_int[" ip"]
area = ospf_int.get("area")
subnet = ip_int.get("subnet")
networks.append({

"network": subnet.cidr,
"area": area

})

ospf_interfaces.append({
" id": ospf_int["phy"].get(" id"),
" cost ": ospf_int.get(" cost ")

})

return {
" interfaces ": ospf_interfaces,
" passive_interfaces ": passive_interfaces,
"networks": networks

}

Listing F.3: Simple Quagga Compiler for OSPF configuration example

class simple_ios_compiler(simple_router_compiler):
loopback_zero_id = "Loopback0"

def interfaces(self, node):
ifaces = []
phy_node = self.anm["phy"].node(node)
for interface in phy_node.physical_interfaces():

int_id = interface.get(" id")
ip_int = interface[" ip"]
ip = ip_int.get(" ip")
subnet = ip_int.get("subnet")

ospf_int = interface["ospf"]
ospf_cost = ospf_int.get(" cost ")

ifaces.append({" ip": ip,
" id": int_id,
"ospf_cost": ospf_cost,
"shutdown": False,
"netmask": str(subnet.netmask)})

interface = node.loopback_zero
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ip_int = interface[" ip"]
int_id = interface.get(" id")
ip = ip_int.get(" ip")
subnet = ip_int.get("subnet")
ifaces.append({" ip": str(ip),

" id": self.loopback_zero_id,
"netmask": str(subnet.netmask)})

return ifaces

def ospf(self, node):
# process interfaces
networks = []
passive_interfaces = []
ospf_node = node["ospf"]
process_id = ospf_node.get("process_id")
router_id = ospf_node.get("router_id")
for interface in ospf_node.physical_interfaces():

area = interface.get("area")
subnet = interface[" ip"].get("subnet")
networks.append({

"area": area,
" prefix ": str(subnet.network),
"hostmask": str(subnet.hostmask)

})

passive_interfaces.append({
" id": self.loopback_zero_id,

})

lo0 = ospf_node.loopback_zero
subnet = lo0[" ip"].get("subnet")
networks.append({

"area": lo0.get("area"),
" prefix ": str(subnet.network),
"hostmask": str(subnet.hostmask)

})

return {
"networks": networks,
" passive_interfaces ": passive_interfaces}

Listing F.4: Simple IOS Compiler for OSPF configuration example

class simple_ios_xr_compiler(simple_router_compiler):
loopback_zero_id = "Loopback0"

def interfaces(self, node):
ifaces = []
phy_node = self.anm["phy"].node(node)
for interface in phy_node.physical_interfaces():

int_id = interface.get(" id")
ip_int = interface[" ip"]
ip = ip_int.get(" ip")
subnet = ip_int.get("subnet")
ifaces.append({" ip": ip,

" id": int_id,
"shutdown": False,
"netmask": str(subnet.netmask)})

interface = node.loopback_zero
ip_int = interface[" ip"]
int_id = interface.get(" id")
ip = ip_int.get(" ip")
subnet = ip_int.get("subnet")
ifaces.append({" ip": str(ip),
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" id": self.loopback_zero_id,
"netmask": str(subnet.netmask)})

return ifaces

def ospf(self, node):
# process interfaces
networks = []
passive_interfaces = []

interfaces_by_area = defaultdict(list)

ospf_node = node["ospf"]
process_id = ospf_node.get("process_id")
for interface in ospf_node.physical_interfaces():

area = interface.get("area")
cost = interface.get(" cost ")
iface_id = interface["phy"].get(" id")
interfaces_by_area[area].append({

" id": iface_id,
" cost ": cost

})

lo0 = ospf_node.loopback_zero
loopback_zero_area = lo0.get("area")
interfaces_by_area[loopback_zero_area].append({

" id": self.loopback_zero_id,
"passive": True

})

return {" interfaces_by_area": interfaces_by_area}

Listing F.5: Simple IOS-XR Compiler for OSPF configuration example

class simple_nxos_compiler(simple_router_compiler):
loopback_zero_id = "Loopback0"

def interfaces(self, node):
ifaces = []
phy_node = self.anm["phy"].node(node)

ospf_process_id = node["ospf"].get("process_id")
for interface in phy_node.physical_interfaces():

int_id = interface.get(" id")
ip_int = interface[" ip"]
ip = ip_int.get(" ip")
subnet = ip_int.get("subnet")
cidr = "%s/%s" % (ip, subnet.prefixlen)

ospf_int = interface["ospf"]
ospf_area = ospf_int.get("area")
ospf_cost = ospf_int.get(" cost ")

ifaces.append({" cidr ": cidr,
" id": int_id,
"ospf_process_id": ospf_process_id,
"ospf_area": ospf_area,
"ospf_cost": ospf_cost,
"shutdown": False
})

interface = node.loopback_zero
ospf_area = interface["ospf"].get("area")
ip_int = interface[" ip"]
int_id = interface.get(" id")
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ip = ip_int.get(" ip")
subnet = ip_int.get("subnet")
cidr = "%s/%s" % (ip, subnet.prefixlen)
ifaces.append({" cidr ": str(cidr),

" id": self.loopback_zero_id,
"ospf_process_id": ospf_process_id,
"ospf_area": ospf_area
})

return ifaces

def ospf(self, node):
router_id = node["ospf"].get("router_id")
return {"router_id": router_id}

Listing F.6: Simple NX-OS Compiler for OSPF configuration example

class simple_junos_compiler(simple_router_compiler):
loopback_zero_id = " lo0 "

def interfaces(self, node):
ifaces = []
phy_node = self.anm["phy"].node(node)
for interface in phy_node.physical_interfaces():

int_id = interface.get(" id")
ip_int = interface[" ip"]
ip = ip_int.get(" ip")
subnet = ip_int.get("subnet")
cidr = "%s/%s" % (ip, subnet.prefixlen)

ifaces.append({" cidr ": cidr,
" id": int_id
})

interface = node.loopback_zero
ip_int = interface[" ip"]
int_id = interface.get(" id")
ip = ip_int.get(" ip")
subnet = ip_int.get("subnet")
cidr = "%s/%s" % (ip, subnet.prefixlen)
ifaces.append({" cidr ": str(cidr),

" id": self.loopback_zero_id
})

return ifaces

def ospf(self, node):
# process interfaces
networks = []
passive_interfaces = []
router_id = node["ospf"].get("router_id")

interfaces_by_area = defaultdict(list)

ospf_node = node["ospf"]
process_id = ospf_node.get("process_id")
for interface in ospf_node.physical_interfaces():

area = interface.get("area")
cost = interface.get(" cost ")
iface_id = interface["phy"].get(" id")
interfaces_by_area[area].append({

" id": iface_id,
"metric": cost

})
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lo0 = ospf_node.loopback_zero
loopback_zero_area = lo0.get("area")
interfaces_by_area[loopback_zero_area].append({

" id": self.loopback_zero_id,
"passive": True

})

return {" interfaces_by_area": interfaces_by_area}

nidb = {"hosts": {}, " labs ": None, " interfaces ": {}}

Listing F.7: Simple Junos Compiler for OSPF configuration example

class simple_platform_compiler(object):
max_interfaces = 20

def __init__(self, anm, nidb):
self.anm = anm
self.nidb = nidb

def assign_interface_ids(self, node):
target = node.get(" target ")
if target == "quagga":

prefix = "eth"
elif target == " ios ":

prefix = "Ethernet0/"
elif target == " ios_xr ":

prefix = "Ethernet0/"
elif target == "nxos":

prefix = "Ethernet0/"
elif target == " junos":

prefix = "Ethernet0/"

for index, interface in enumerate(node.physical_interfaces()):
id = "%s%s" % (prefix, index)
interface.set(" id", id)
interface["phy"].set(" id", id)

node.loopback_zero["phy"].set(" id", " lo :1 ")

def setup_interfaces(self, node):
ifaces = []

for interface in node.physical_interfaces():
ip_int = g_ip.interface(interface)
ifaces.append({

" id": interface.get(" id"),
" ip": ip_int.get(" ip"),
"subnet": ip_int.get("subnet")

})

return ifaces

def compile(self):
g_in = self.anm["input"]
g_phy = self.anm["phy"]
g_ip = self.anm[" ip"]

quagga_compiler = simple_quagga_compiler(self.anm, self.nidb)
ios_compiler = simple_ios_compiler(self.anm, self.nidb)
ios_xr_compiler = simple_ios_xr_compiler(self.anm, self.nidb)
nxos_compiler = simple_nxos_compiler(self.anm, self.nidb)
junos_compiler = simple_junos_compiler(self.anm, self.nidb)
netkit_hosts = g_phy.nodes()
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for host in netkit_hosts:
self.assign_interface_ids(host)
self.nidb[" interfaces "][host] = self.setup_interfaces(host)

subnets = []
for host in netkit_hosts:

phy_node = g_phy.node(host)
host_ifaces = host.physical_interfaces()
host_ifaces = sorted(host_ifaces, key=lambda i: i.get(" id"))

for interface in host_ifaces:
nk_id = interface.id.replace("eth", " ")
ip_int = g_ip.interface(interface)
subnet = str(ip_int.get("subnet"))
subnet = subnet.replace("/", " . ")
data = {"host": host, " interface_id ": nk_id, "subnet":

subnet}
subnets.append(data)

taps = []

routers = [n for n in netkit_hosts if n.is_router()]
for node in routers:

# and compile
target = node["phy"].get(" target ")
if target == "quagga":

rtr_comp = quagga_compiler
elif target == " ios ":

rtr_comp = ios_compiler
elif target == " ios_xr ":

rtr_comp = ios_xr_compiler
elif target == "nxos":

rtr_comp = nxos_compiler
elif target == " junos":

rtr_comp = junos_compiler
rtr_data = rtr_comp.compile(node)
self.nidb["hosts"][node.label] = rtr_data

lab = {"machines": netkit_hosts, "subnets": subnets, " taps": taps
}

self.nidb[" labs "] = lab

Listing F.8: Simple Platform Compiler for OSPF configuration example

f.1.3 Templates

!
! zebra.conf
!
hostname {{node.hostname}}
{% for interface in node.interfaces %}
interface {{interface.id}}
ip address {{interface.cidr}}

{% endfor %}
!
!
!
! ospfd.conf
!
hostname {{node.hostname}}
{% for interface in node.ospf.interfaces %}
interface {{interface.id}}
ip ospf cost {{interface.cost}}
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{% endfor %}
!
{% for interface in node.ospf.passive_interfaces %}
passive-interface {{interface.id}}
{% endfor %}
!
router ospf
{% for network in node.ospf.networks %}
network {{network.network}} area {{network.area}}
{% endfor %}

!
!

Listing F.9: Template for Quagga for OSPF configuration example

!
hostname {{node.hostname}}
!
{% for interface in node.interfaces %}
interface {{interface.id}}
ip address {{interface.ip}} {{interface.netmask}}
{% if interface.ospf_cost%}
ip ospf cost {{interface.ospf_cost}}
{% endif %}
{% if interface.shutdown == False%}
no shutdown
{% endif %}

{% endfor %}
!
router ospf {{node.ospf_process_id}}
{% for network in node.ospf.networks %}
network {{network.prefix}} {{network.hostmask}} area {{network.area}}

{% endfor %}
{% for interface in node.ospf.passive_interfaces %}
passive-interface {{interface.id}}

{% endfor %}

Listing F.10: Template for IOS for OSPF configuration example

!
hostname {{node.hostname}}
!
{% for interface in node.interfaces %}
interface {{interface.id}}
ipv4 address {{interface.ip}} {{interface.netmask}}
{% if interface.shutdown == False%}
no shutdown
{% endif %}

{% endfor %}
!
router ospf {{node.ospf_process_id}}
{% for area, area_data in node.ospf.interfaces_by_area.iteritems() %}
area {{area}}
{% for entry in area_data %}
interface {{entry.id}}
{% if entry.cost%}
cost {{entry.cost}}

{% endif %}
{% if entry.passive%}
passive enable

{% endif %}
!
{% endfor %}

!
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{% endfor %}

Listing F.11: Template for IOS-XR for OSPF configuration example

!
hostname {{node.hostname}}
!
feature ospf
!
{% for interface in node.interfaces %}
interface {{interface.id}}
ip address {{interface.cidr}}
ip router ospf {{interface.ospf_process_id}} area {{interface.ospf_area

}}
ip ospf cost {{interface.ospf_cost}}
{% if interface.shutdown == False%}
no shutdown
{% endif %}

{% endfor %}
!
router ospf {{node.ospf_process_id}}
router-id {{node.ospf.router_id}}

Listing F.12: Template for NX-OS for OSPF configuration example

interfaces {
{% for interface in node.interfaces %}
{{interface.id}} {
unit 0 {
family inet {
address {{interface.cidr}};

}
}

}
{% endfor %}
protocols {
ospf {
{% for area, area_data in node.ospf.interfaces_by_area.iteritems() %}
area {{area}} {
{% for entry in area_data %}
{{entry.id}} {
{% if entry.metric %}
metric {{entry.metric}};
{% endif %}
{% if entry.passive %}
passive;
{% endif %}

}
{% endfor %}

}
{% endfor %}
}

}

Listing F.13: Template for Junos for OSPF configuration example

f.1.4 Compiling and Rendering

sim_plat = simple_platform_compiler(anm, nidb)
nidb_hosts = nidb.get("hosts")

templates = {}
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# Setup Jinja2 environment
env = Environment(trim_blocks=True, lstrip_blocks=True)

templates["quagga"] = env.get_template("quagga. j in ja2 ")
templates[" ios "] = env.get_template(" ios . j in ja2 ")
templates[" ios_xr "] = env.get_template(" ios_xr . j in ja2 ")
templates["nxos"] = env.get_template("nxos . j in ja2 ")
templates[" junos"] = env.get_template(" junos . j in ja2 ")

# Setup JSON encoder for custom data types
class AnkEncoder(json.JSONEncoder):

def default(self, obj):
if isinstance(obj, set):

return str(obj)
if isinstance(obj, netaddr.IPAddress):

return str(obj)
if isinstance(obj, netaddr.IPNetwork):

return str(obj)

return json.JSONEncoder.default(self, obj)

# Build for each target
targets = ["quagga", " ios ", " ios_xr ", "nxos", " junos"]
for target in targets:

for node in g_phy:
node.set(" target ", target)

sim_plat.compile()
# Print IDM for r3
rtr_data = nidb_hosts["r3"]
with open("%s_nidb . json" % target, "w") as fh:

json.dump(rtr_data, fh, cls=AnkEncoder, indent=1, sort_keys=True)

# Render r3 output using target template
template = templates[target]
with open("%s_output . txt " % target, "w") as fh:

fh.write(template.render(node=rtr_data))

Listing F.14: Source code for compilation and rendering for OSPF
configuration example

f.2 example templates

These example templates show the process of generating the De-
vice Configurations from a JSON version of the Intermediate Device
Model. They are based on a simplified version of the Quagga config-
uration format.
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f.2.1 OSPF

[
{
"area": 0,
"cost": 1,
"desc": "to r5",
"network": "J/24"
}, {
"area": 0,
"cost": 1,
"desc": "to r6",
"network": "K/24"
}
]

Listing F.15: OSPF
JSON

router ospf
{% for e in data %}
network {{e.network}} area {{e.area}}

{% endfor %}

Listing F.16: OSPF Template

router ospf
network J/24 area 0
network K/24 area 0

Listing F.17: OSPF Output

f.2.2 iBGP

[
{
"asn": 20,
"desc": "to r2",
"neighbor": "B.1"
}, {
"asn": 20,
"desc": "to r3",
"neighbor": "B.2"
}
]

Listing F.18: iBGP JSON

{% for e in data %}
neighbor {{e.neighbor}} remote-as {{e.asn}}

{% endfor %}

Listing F.19: iBGP Template

neighbor B.1 remote-as 20
neighbor B.2 remote-as 20

Listing F.20: iBGP Output
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f.2.3 eBGP

{
"neighbors": [
{
"asn": 200,
"desc": "to r5",
"neighbor": "C.1"
}, {
"asn": 30,
"desc": "to r6",
"neighbor": "D.1"
}
],
"networks": [
"B/24",
"J/24",
"K/24",
"L/24"
]
}

Listing F.21: eBGP
JSON

{% for e in data.networks %}
network {{e}}

{% endfor %}
{% for e in data.neighbors %}
neighbor {{e.neighbor}} remote-as {{e.asn}}

{% endfor %}

Listing F.22: eBGP Template

network B/24
network J/24
network K/24
network L/24
neighbor C.1 remote-as 200
neighbor D.1 remote-as 30

Listing F.23: eBGP Output
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hostname {{ hostname }}
password {{ zebra.pwd }}
enable password {{ zebra.pwd }}
{% for sr in zebra.static_routes %}
! {{ sr.description }}
ip route {{ sr.loopback }} {{ sr.

next_hop }}
{% endfor %}
!
{% for i in interfaces %}
interface {{ i.id }}
description {{i.desc}}
{% if i.use_ipv4 %}
ip address {{i.ipv4_cidr}}
{% if i.ospf_cost %}
ip ospf cost {{ i.ospf_cost }}
{% endif %}
{% if i.role=="loopback" %}
ip address 127.0.0.1/8
{% endif %}
!
{% endif %}
{% endfor %}
!
{% if ospf %}
router ospf
{% for o_link in ospf.ospf_links %}
network {{ o_link.network }} area

{{ o_link.area }}
{% endfor %}
!

{% for pass_int in ospf.passive_

interfaces %}
passive-interface {{ pass_int.id

}}
{% endfor %}
!
network {{ ospf.loopback_subnet

}} area 0
{% endif %}
!
{% if bgp %}
router bgp {{ asn }}
bgp router-id {{ loopback }}

no synchronization
{% for subnet in bgp.ipv4_adv_

subnets %}
network {{ subnet.cidr }}
{% endfor %}
! ibgp
{% for n in bgp.ibgp_neighs %}
{% if loop.first %}

! ibgp peers
{% endif %}

! {{ n.neighbor }}
neighbor {{ n.loopback }} remote-

as {{ n.asn }}
neighbor {{ n.loopback }} update-

source {{ loopback }}
neighbor {{ n.loopback }} send-

community
neighbor {{ n.loopback }} next-

hop-self
{% endfor %}
! ebgp
{% for n in bgp.ebgp_neighs%}
! {{ n.neighbor }}
neighbor {{ n.dst_ip }} remote-as

{{ n.asn }}
neighbor {{ n.dst_ip }} update-

source {{ n.src_int_ip }}
neighbor {{ n.dst_ip }} send-

community
{% endfor %}

{% endif %}
!
{% if bgp.debug %}
debug bgp
debug bgp events
debug bgp updates
log file /var/log/zebra/bgpd.log
{% endif %}
!
log file /var/log/zebra/zebra.log

Listing G.1: Quagga Template
Example
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g.1 code for house example

g.1.1 Design Functions

from autonetkit.ank import explode_nodes

g_l2_conn = anm.add_overlay("layer2_conn")
g_l2_conn.add_nodes_from(g_l2)
g_l2_conn.add_edges_from(g_l2.edges())

bc_nodes = g_l2.nodes(broadcast_domain=True)

explode_nodes(g_l2_conn, bc_nodes)

autonetkit.update_http(anm)

Listing G.2: Layer 2 Connectivity Design Function

from autonetkit.ank import split, groupby, copy_attr_from
from netaddr import IPNetwork

g_ip = anm.add_overlay(" ip")
g_ip.add_nodes_from(g_l2)
g_ip.add_edges_from(g_l2.edges())

bc_nodes = g_l2.nodes(broadcast_domain=True)

bc_attrs = ["broadcast_domain", "device_type", "asn"]
for attr in bc_attrs:

copy_attr_from(g_l2, g_ip, attr, nbunch=bc_nodes)

# allocate loopback IPs
block = IPNetwork(" 10.0.0.0/16 ")
subnets = block.subnet(24)

# Dictionary to store per-AS loopback blocks
loopback_allocations = {}

l3_nodes = g_ip.l3devices()
for asn, nodes in groupby("asn", l3_nodes):

# Get next /24 block for AS
asn_block = subnets.next()
# Record allocation
loopback_allocations[asn] = asn_block
hosts = asn_block.iter_hosts()

for node in sorted(nodes):
# Allocate the next IP to the node loopback zero
ip = hosts.next()
node.set("loopback", ip)
node.loopback_zero.set(" ip", ip)
node.loopback_zero.set("subnet", IPNetwork(ip))

# allocate infra IPs
block = IPNetwork("192.168.0.0/16 ")
subnets = block.subnet(24)

# Dictionary to store per-AS infrastructure blocks
infra_allocations = {}

bc_nodes = g_ip.nodes(broadcast_domain=True)
for asn, nodes in groupby("asn", bc_nodes):
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# Get next /24 block for AS
asn_block = subnets.next()
# Record allocation
infra_allocations[asn] = asn_block
ptp_subnets = asn_block.subnet(30)
for node in sorted(nodes):

# Set the /30 onto the pseudo-node
prefix = ptp_subnets.next()
node.set("subnet", prefix)

hosts = prefix.iter_hosts()
for neigh_iface in sorted(node.neighbor_interfaces()):

# Allocate the next IP to the node interface
address = hosts.next()
neigh_iface.set(" ip", address)
neigh_iface.set("subnet", prefix)

autonetkit.update_http(anm)

Listing G.3: IP Addressing Design Function

g_ospf = anm.add_overlay("ospf")
g_ospf.add_nodes_from(g_in.routers())
g_ospf.add_edges_from(e for e in g_in.edges()

if e.src.asn == e.dst.asn)

for node in g_ospf:
for interface in node.physical_interfaces():

interface.set("area", 0)

node.loopback_zero.set("area", 0)

autonetkit.update_http(anm)

Listing G.4: OSPF Design Function

from netaddr import IPSet

for node in g_ospf:
asn = node.get("asn")
# Get address blocks for this AS
infra_block = infra_allocations.get(asn, [])
lo_block = loopback_allocations.get(asn, [])
# Create set of all networks for this node
adv_prefixes = IPSet(infra_block)
adv_prefixes.update(lo_block)
# Store on the node
node.set("networks", adv_prefixes.iter_cidrs())

Listing G.5: OSPF Advertise Design Function

g_ibgp = anm.add_overlay("ibgp")
g_ibgp.add_nodes_from(g_in.routers())
# Create cartesian product of nodes in same ASN
edges = [(s, t) for s in g_ibgp for t in g_ibgp

if s != t and s.asn == t.asn]

for e in edges:
# get source and destination nodes
src, dst = e
# Create BGP session termination points
src_endpoint = src.add_interface(category="bgp_session")
dst_endpoint = dst.add_interface(category="bgp_session")
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# Bind session termination point to loopback interface
src_endpoint.set("bound_to", src.loopback_zero)
dst_endpoint.set("bound_to", dst.loopback_zero)
# add session to g_ibgp
g_ibgp.add_edge(src_endpoint, dst_endpoint)

autonetkit.update_http(anm)

Listing G.6: iBGP Design Function

g_ebgp = anm.add_overlay("ebgp")
g_ebgp.add_nodes_from(g_in.routers())
edges = [e for e in g_in.edges()

if e.src.asn != e.dst.asn]

for e in edges:
# Obtain source and destination nodes
src = g_ebgp.node(e.src)
dst = g_ebgp.node(e.dst)
# Create BGP session termination points
src_endpoint = src.add_interface(category="bgp_session")
dst_endpoint = dst.add_interface(category="bgp_session")
# Bind session termination point to physical interface
src_endpoint.set("bound_to", e.src_int)
dst_endpoint.set("bound_to", e.dst_int)
# add session to g_ebgp
g_ebgp.add_edge(src_endpoint, dst_endpoint)

autonetkit.update_http(anm)

Listing G.7: eBGP Topology component of eBGP Design Function

# networks to advertise
from netaddr import IPSet

for node in g_ebgp:
adv_prefixes = IPSet()
if node.degree() == 0:

# Not an eBGP speaker
continue

asn = node.get("asn")
# Get address blocks for this AS
infra_block = infra_allocations.get(asn, [])
lo_block = loopback_allocations.get(asn, [])

# Create set of all networks for this node
adv_prefixes.update(infra_block)
adv_prefixes.update(lo_block)
# Store on the node
node.set("networks", adv_prefixes.iter_cidrs())

autonetkit.update_http(anm)

Listing G.8: eBGP Network Advertisement component of eBGP Design
Function
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g.1.2 Compiling

from autonetkit.compilers.platform import platform_base
from netaddr import IPNetwork

nidb = {"hosts": {}, " labs ": None, " interfaces ": {}}

class simple_platform_compiler(object):
max_interfaces = 20

def __init__(self, anm, nidb):
self.anm = anm
self.nidb = nidb

def assign_interface_ids(self, node):
for index, interface in enumerate(node.physical_interfaces()):

id = "eth%s" % index
interface.set(" id", id)
interface["phy"].set(" id", id)

node.loopback_zero["phy"].set(" id", " lo :1 ")

def add_taps(self, netkit_hosts):
tap_pool = IPNetwork("172.16.0.0/16 ")
tap_hosts = tap_pool.iter_hosts()

netkit_host_tap_ip = tap_hosts.next() # for the tap vm
tap_vm_ip = tap_hosts.next() # for the tap vm

tap_map = []

for node in netkit_hosts:
ifaces = {iface.get(" id") for iface in node.

physical_interfaces()}

next_free_if = None
for x in range(0, self.max_interfaces):

if "eth%s" % x not in ifaces:
next_free_if_id = x
next_free_if = "eth%s" % x
break

else:
print "Warning: Reached interface limit for %s" % node
continue

iface = node.add_interface(id=next_free_if, desc=next_free_if
)

tap_ip = tap_hosts.next()
iface.set(" ip", tap_ip)
iface.set("tap", True)

tap_map.append(
{"node": node,

" interface_id ": next_free_if_id,
"tap_ip": tap_ip
})

# and add to the interfaces for this host
self.nidb[" interfaces "][node].append({

" id": next_free_if,
" ip": tap_ip,
"subnet": tap_pool

})
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return {
" linux_host": netkit_host_tap_ip,
"tap_vm_ip": tap_vm_ip,
" tap_hosts": tap_map

}

def setup_interfaces(self, node):
ifaces = []

for interface in node.physical_interfaces():
ip_int = g_ip.interface(interface)
ifaces.append({

" id": interface.get(" id"),
" ip": ip_int.get(" ip"),
"subnet": ip_int.get("subnet")

})

return ifaces

def compile(self):
g_in = self.anm["input"]
g_phy = self.anm["phy"]
g_ip = self.anm[" ip"]

rtr_comp = simple_router_compiler(self.nidb, self.anm)
netkit_hosts = g_in.nodes()

for host in netkit_hosts:
self.assign_interface_ids(host)
self.nidb[" interfaces "][host] = self.setup_interfaces(host)

subnets = []
for host in netkit_hosts:

phy_node = g_phy.node(host)
host_ifaces = host.physical_interfaces()
host_ifaces = sorted(host_ifaces, key=lambda i: i.get(" id"))

for interface in host_ifaces:
nk_id = interface.id.replace("eth", " ")
ip_int = g_ip.interface(interface)
subnet = str(ip_int.get("subnet"))
subnet = subnet.replace("/", " . ")
data = {"host": host, " interface_id ": nk_id, "subnet":

subnet}
subnets.append(data)

taps = self.add_taps(netkit_hosts)

routers = [n for n in netkit_hosts if n.is_router()]
for node in routers:

rtr_data = rtr_comp.compile(node)
self.nidb["hosts"][node.label] = rtr_data

lab = {"machines": netkit_hosts, "subnets": subnets, " taps": taps
}

self.nidb[" labs "] = lab

sim_plat = simple_platform_compiler(anm, nidb)
sim_plat.compile()

Listing G.9: Create Platform Compiler

lab = nidb.get(" labs ")

415



G.1 code for house example

nidb_hosts = nidb.get("hosts")

Listing G.10: NIDB Shortcuts

# Create Platform Compiler and Compile
sim_plat = simple_platform_compiler(anm, nidb)
sim_plat.compile()

Listing G.11: Compile Platform

from autonetkit.compilers.device import router_base

class simple_router_compiler(router_base.RouterCompiler):
loopback_zero_id = " lo :1 " # on linux loopback zero is 127.0.0.1

def compile(self, node):
zebra = self.zebra(node)
ssh = self.ssh(node)
interfaces = self.interfaces(node)
ospf = self.ospf(node)
bgp = self.bgp(node)

return {
"zebra": zebra,
"ssh": ssh,
" interfaces ": interfaces,
"ospf": ospf,
"bgp": bgp,
"hostname": str(node),
"asn": node.get("asn")

}

def zebra(self, node):
password = "zebra"
return {

"password": password
}

def ssh(self, node):
return {

"use_key": False
}

def interfaces(self, node):
ifaces = []
for interface in self.nidb[" interfaces "].get(node):

int_id = interface.get(" id")
ip = interface.get(" ip")
subnet = interface.get("subnet")
ifaces.append({" ip": ip,

" id": int_id,
"broadcast": subnet.broadcast,
"netmask": subnet.netmask
})

lo0 = self.anm[" ip"].node(node).loopback_zero
ip = lo0.get(" ip")
subnet = lo0.get("subnet")
lo_zero_id = lo0["phy"].get(" id")
ifaces.append({" ip": ip,

" id": lo_zero_id,
"broadcast": subnet.broadcast,
"netmask": subnet.netmask

416



G.1 code for house example

})
return ifaces

def ospf(self, node):
ospf_node = self.anm["ospf"].node(node)

process_id = ospf_node.get("process_id")

# now interfaces
networks = []

lo0 = ospf_node.loopback_zero
subnet = lo0[" ip"].get("subnet")
networks.append({

"area": lo0.get("area"),
"network": subnet.cidr

})

for ospf_int in ospf_node.physical_interfaces():
if not ospf_int.is_bound:

continue

ip_int = ospf_int[" ip"]
area = ospf_int.get("area")
subnet = ip_int.get("subnet")
networks.append({

"network": subnet.cidr,
"area": area

})

return {
"networks": networks

}

def bgp(self, node):
ibgp_neighbors = []
g_ibgp = self.anm["ibgp"]

for session in g_ibgp.edges(node):
dst = session.dst
src_int = session.src_int
src_bound_int = src_int.get("bound_to")
update_source_ip = src_bound_int[" ip"].get(" ip")
dst_int = session.dst_int
dst_bound_int = dst_int.get("bound_to")
neigh_ip = dst_bound_int[" ip"].get(" ip")
desc = "Router %s" % dst
data = {

"update_source": update_source_ip,
"neigh_ip": neigh_ip,
"asn": dst.get("asn"), # should be same as node’s!
"desc": desc

}
ibgp_neighbors.append(data)

ebgp_neighbors = []
g_ebgp = self.anm["ebgp"]
ebgp_node = g_ebgp.node(node)
for session in g_ebgp.edges(node):

dst = session.dst
src_int = session.src_int
src_bound_int = src_int.get("bound_to")
update_source_ip = src_bound_int[" ip"].get(" ip")
dst_int = session.dst_int
dst_bound_int = dst_int.get("bound_to")
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neigh_ip = dst_bound_int[" ip"].get(" ip")
desc = "Router %s" % dst
data = {

"update_source": update_source_ip,
"neigh_ip": neigh_ip,
"asn": dst.get("asn"),
"desc": desc

}
ebgp_neighbors.append(data)

networks = ebgp_node.get("networks") or []

lo0 = self.anm[" ip"].node(node).loopback_zero
router_id = lo0.get(" ip")

return {
"ibgp_neighbors": ibgp_neighbors,
"ebgp_neighbors": ebgp_neighbors,
"networks": networks,
"router_id": router_id

}

Listing G.12: Specify Device Compiler

g.1.3 Templates

from jinja2 import Template, Environment
env = Environment(trim_blocks=True, lstrip_blocks=True)

Listing G.13: Setup Environment

!
hostname {{node.hostname}}
password zebra
enable password zebra
!
router bgp {{node.asn}}
{% for network in node.bgp.networks %}
network {{network}}
{% endfor %}
{% for neigh in node.bgp.ibgp_neighbors %}
! {{neigh.neigh_ip}}
neighbor {{neigh.neigh_ip}} remote-as {{neigh.asn}}
neighbor {{neigh.neigh_ip}} update-source {{neigh.update_source}}
neighbor {{neigh.neigh_ip}} description {{neigh.desc}}
neighbor {{neigh.neigh_ip}} next-hop-self
{% endfor %}
!
{% for neigh in node.bgp.ebgp_neighbors %}
! {{neigh.neighbor}}
neighbor {{neigh.neigh_ip}} remote-as {{neigh.asn}}
neighbor {{neigh.neigh_ip}} update-source {{neigh.update_source}}
neighbor {{neigh.neigh_ip}} description {{neigh.desc}}
{% endfor %}
!
!
log file /var/log/zebra/bgpd.log
!
debug bgp
debug bgp events
debug bgp filters
debug bgp fsm
debug bgp keepalives
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debug bgp updates
!

Listing G.14: BGP Template

# daemons file
zebra={{ ’yes’ if node.zebra else ’no’ }}
bgpd={{ ’yes’ if node.bgp else ’no’ }}
ripd={{ ’yes’ if node.rip else ’no’ }}
ospfd={{ ’yes’ if node.ospf else ’no’ }}
ospf6d={{ ’yes’ if node.ospf6 else ’no’ }}
ripngd={{ ’yes’ if node.ripng else ’no’ }}
isisd={{ ’yes’ if node.isis else ’no’ }}

Listing G.15: Daemons Template

!
hostname {{node.hostname}}
password zebra
enable password zebra
!
!
router ospf

{% for network in node.ospf.networks %}
network {{network.network}} area {{network.area}}
{% endfor %}

!
log file /var/log/zebra/ospfd.log
!

Listing G.16: OSPF Template

{% if node.zebra %}
hostname {{node.hostname}}
password {{node.zebra.password}}
enable password {{node.zebra.password}}
banner motd file /etc/quagga/motd.txt
{% for static_route in node.zebra.static_routes %}
! {{static_route.description}}
ip route {{static_route.loopback}} {{static_route.next_hop}}
{% endfor %}
!

log file /var/log/zebra/zebra.log
{% endif %}

Listing G.17: Zebra Template

hostname {{node.hostname}}

Listing G.18: Hostname Template

{% for i in node.interfaces %}
/sbin/ifconfig {{i.id}} {{i.ip}} netmask {{i.netmask}} broadcast {{i.

broadcast}} up
{% endfor %}
route del default
/sbin/ifconfig lo 127.0.0.1 up
/etc/init.d/ssh start
/etc/init.d/hostname.sh
{% if node.zebra %}
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/etc/init.d/zebra start
{% endif %}
{% if node.ssh.use_key %}
chown -R root:root /root
chmod 755 /root
chmod 755 /root/.ssh
chmod 644 /root/.ssh/authorized_keys
{% endif %}
/etc/init.d/inetd restart
echo pts/0 >> /etc/securetty
echo pts/1 >> /etc/securetty
echo pts/2 >> /etc/securetty
echo pts/3 >> /etc/securetty
echo pts/4 >> /etc/securetty
echo pts/5 >> /etc/securetty
echo pts/6 >> /etc/securetty

Listing G.19: Startup Template

root:$1$LB0MUyNC$4y8CpiP0PjymXi.p.M8fg/:14558:0:99999:7:::
daemon:*:14219:0:99999:7:::
bin:*:14219:0:99999:7:::
sys:*:14219:0:99999:7:::
sync:*:14219:0:99999:7:::
games:*:14219:0:99999:7:::
man:*:14219:0:99999:7:::
lp:*:14219:0:99999:7:::
mail:*:14219:0:99999:7:::
news:*:14219:0:99999:7:::
uucp:*:14219:0:99999:7:::
proxy:*:14219:0:99999:7:::
www-data:*:14219:0:99999:7:::
backup:*:14219:0:99999:7:::
list:*:14219:0:99999:7:::
irc:*:14219:0:99999:7:::
gnats:*:14219:0:99999:7:::
nobody:*:14219:0:99999:7:::
libuuid:!:14219:0:99999:7:::
bind:*:14219:0:99999:7:::
messagebus:*:14219:0:99999:7:::
dnsmasq:*:14219:0:99999:7:::
Debian-exim:!:14219:0:99999:7:::
freerad:*:14219:0:99999:7:::
statd:*:14219:0:99999:7:::
sshd:*:14219:0:99999:7:::
pdns:!:14219:0:99999:7:::
proftpd:!:14219:0:99999:7:::
ftp:*:14219:0:99999:7:::
quagga:*:14219:0:99999:7:::
snmp:*:14219:0:99999:7:::
snort:*:14219:0:99999:7:::
telnetd:*:14219:0:99999:7:::
uml-net:*:14219:0:99999:7:::
xorp:*:14219:0:99999:7:::
guest:nlbMnI.VQBS3s:14219:0:99999:7:::

Listing G.20: Shadow Template

UseDNS no
LogLevel DEBUG

Listing G.21: SSH Config Template
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machines = "{{ lab.machines|join(’, ’) }}"

{% for entry in lab.subnets %}
{{entry.host}}[{{entry.interface_id}}]={{entry.subnet}}
{% endfor %}

{% for entry in lab.taps.tap_hosts %}
{{entry.node}}[{{entry.interface_id}}]=tap,{{lab.taps.linux_host}},{{

entry.tap_ip}}
{% endfor %}

Listing G.22: Lab Template

g.1.4 Rendering

templates = {
"quagga":
{

"bgpd": bgp_template,
"ospfd": ospf_template,
"zebra": zebra_template,

},
" etc ":

{
"hostname": etc_host_template,
"shadow": etc_shadow_template,

},
"ssh_config": etc_ssh_config_template,
"startup": startup_template,
"zebra_daemons": daemons_template,

}

Listing G.23: Setup Templates

import zipfile
import os

archive_path = " lab . zip"
archive = zipfile.ZipFile(archive_path, mode= ’w’)

lab_data = lab_template.render(lab=lab)
archive.writestr(" lab . conf", lab_data)

for name, data in sorted(nidb_hosts.items()):
dest = "%s . startup" % name
template = templates["startup"]
archive.writestr(dest, template.render(node=data))

zebra_path = "%s/etc/zebra/" % name
for fname, template in templates["quagga"].items():

rendered = template.render(node=data)
dest = os.path.join(zebra_path, "%s . conf" % fname)
archive.writestr(dest, rendered)

dest = os.path.join(zebra_path, "daemons")
template = templates["zebra_daemons"]
archive.writestr(dest, template.render(node=data))

etc_dir = os.path.join(name, " etc ")

dest = os.path.join(etc_dir, "hostname")
template = templates[" etc "]["hostname"]
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archive.writestr(dest, template.render(node=data))

dest = os.path.join(etc_dir, "shadow")
template = templates[" etc "]["shadow"]
archive.writestr(dest, template.render())

dest = os.path.join(etc_dir, "ssh", "ssh_config")
template = templates["ssh_config"]
archive.writestr(dest, template.render())

archive.close()

Listing G.24: Render Lab

g.1.5 Results

r3# sh ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

I - ISIS, B - BGP, > - selected route, * - FIB route

B>* 10.0.0.0/24 [200/0] via 10.0.0.4 (recursive via 192.168.0.18, eth1),
00:04:56

O>* 10.0.0.1/32 [110/20] via 192.168.0.5, eth0, 00:06:12
O>* 10.0.0.2/32 [110/30] via 192.168.0.5, eth0, 00:06:05

* via 192.168.0.18, eth1, 00:06:05
O 10.0.0.3/32 [110/10] is directly connected, lo, 00:06:57
C>* 10.0.0.3/32 is directly connected, lo
O>* 10.0.0.4/32 [110/20] via 192.168.0.18, eth1, 00:06:05
B>* 10.0.1.0/24 [200/0] via 10.0.0.4 (recursive via 192.168.0.18, eth1),

00:04:56
C>* 127.0.0.0/8 is directly connected, lo
C>* 172.16.0.0/16 is directly connected, eth2
B>* 192.168.0.0/24 [200/0] via 10.0.0.4 (recursive via 192.168.0.18, eth1

), 00:04:56
O>* 192.168.0.0/30 [110/20] via 192.168.0.5, eth0, 00:06:12
O 192.168.0.4/30 [110/10] is directly connected, eth0, 00:06:57
C>* 192.168.0.4/30 is directly connected, eth0
O>* 192.168.0.8/30 [110/20] via 192.168.0.18, eth1, 00:06:05
O 192.168.0.16/30 [110/10] is directly connected, eth1, 00:06:05
C>* 192.168.0.16/30 is directly connected, eth1

Listing G.25: show ip route from r3

r3# show ip ospf neighbor

Neighbor ID Pri State Dead Time Address Interface RXmtL
RqstL DBsmL

10.0.0.1 1 Full/Backup 33.886s 192.168.0.5 eth0:192.168.0.6 0
0 0

10.0.0.4 1 Full/DR 35.501s 192.168.0.18 eth1:192.168.0.17 0
0 0

Listing G.26: show ip ospf neighbor from r3.

r5# show ip bgp summary
BGP router identifier 10.0.1.1, local AS number 2
RIB entries 5, using 320 bytes of memory
Peers 2, using 5032 bytes of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/
PfxRcd

192.168.0.13 4 1 30 33 0 0 0 00:00:43 2
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192.168.0.21 4 1 29 32 0 0 0 00:26:29 2

Total number of neighbors 2

Listing G.27: show ip bgp summary from r5

hostname r5:~# traceroute 10.0.0.1
traceroute to 10.0.0.1 (10.0.0.1), 64 hops max, 40 byte packets
1 192.168.0.13 (192.168.0.13) 0 ms 0 ms 0 ms
2 10.0.0.1 (10.0.0.1) 0 ms 0 ms 0 ms

Listing G.28: Output of traceroute from r5 to r1
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H
C O D E F O R C H A P T E R 8 C A S E S T U D I E S

h.1 introduction

In this appendix we provide the code for the case studies shown in
Chapter 8.

h.2 code for simplified small internet case study

h.2.1 Design Functions

import autonetkit.load.graphml as graphml
with open(" small_internet .graphml") as fh:

data = fh.read()

input_graph = graphml.load_graphml(data)
nodes = {}
for n, data in input_graph.nodes(data=True):

nodes[n] = {
" id": n,
"asn": data["asn"],
"x": int(data["x"] * 1.2),
"y": int(data["y"] * 1.2),

}

edges = input_graph.edges()

Listing H.1: Load GraphML

import autonetkit
anm = autonetkit.NetworkModel()
g_in = anm.add_overlay("input")

nodes = {
"as20r2": {"y": -22, "x": 30, " id": "as20r2", "asn": 20},
"as20r3": {"y": -94, "x": 102, " id": "as20r3", "asn": 20},
"as200r1": {"y": 102, "x": 237, " id": "as200r1", "asn": 200},
"as20r1": {"y": -22, "x": 174, " id": "as20r1", "asn": 20},
"as30r1": {"y": 102, "x": 389, " id": "as30r1", "asn": 30},
"as40r1": {"y": 102, "x": 541, " id": "as40r1", "asn": 40},
"as1r1": {"y": -167, "x": 415, " id": "as1r1", "asn": 1},
"as100r1": {"y": 232, "x": 30, " id": "as100r1", "asn": 100},
"as100r2": {"y": 232, "x": -98, " id": "as100r2", "asn": 100},
"as100r3": {"y": 304, "x": -41, " id": "as100r3", "asn": 100},
"as300r4": {"y": 322, "x": 619, " id": "as300r4", "asn": 300},
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"as300r2": {"y": 232, "x": 619, " id": "as300r2", "asn": 300},
"as300r3": {"y": 322, "x": 506, " id": "as300r3", "asn": 300},
"as300r1": {"y": 232, "x": 506, " id": "as300r1", "asn": 300}

}

for n, d in nodes.items():
g_in.add_node(n, x=d["x"], device_type=" router",

y=d["y"], asn=d["asn"])

for node in g_in:
print node.x, node.y

Listing H.2: Create Network Whiteboard

edges = [("as20r2", "as20r1"), ("as20r2", "as100r1"),
("as20r3", "as20r2"), ("as20r1", "as30r1"),
("as20r1", "as20r3"), ("as300r4", "as300r2"),
("as300r3", "as300r4"), ("as300r1", "as300r3"),
("as40r1", "as300r2"), ("as1r1", "as20r3"),
("as1r1", "as40r1"), ("as100r1", "as20r1"),
("as100r1", "as100r3"), ("as100r2", "as100r1"),
("as100r3", "as100r2"), ("as200r1", "as20r1"),
("as30r1", "as1r1")]

g_in.add_edges_from(edges)
g_in.allocate_input_interfaces()

Listing H.3: Add Edges to Network Whiteboard

autonetkit.update_http(anm)

Listing H.4: Update Visualisation

g_phy = anm[ ’phy’]
g_phy.add_nodes_from(g_in, retain=["asn", "device_type", "x", "y"])
g_phy.update(use_ipv4=True, host=" localhost ",

platform=" netkit ", syntax="quagga")

g_phy.add_edges_from(g_in.edges())
autonetkit.update_http(anm)

Listing H.5: Create Physical Network View

from autonetkit.ank import split
from collections import Counter

g_l2 = anm.add_overlay(" layer2 ")
g_l2.add_nodes_from(g_phy)
g_l2.add_edges_from(g_phy.edges())

# Split the point-to-point edges to add a collision domain
edges_to_split = [edge for edge in g_l2.edges()

if edge.src.is_l3device() and edge.dst.is_l3device()]

for edge in edges_to_split:
edge.split = True # mark as split for use in building nidb

split_created_nodes = split(g_l2, edges_to_split, id_prepend= ’bd_ ’)

for node in split_created_nodes:
# set midway x, y for plot
neighs = node.neighbors()
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x = sum(neigh["phy"].get("x") for neigh in neighs) / len(neighs)
y = sum(neigh["phy"].get("y") for neigh in neighs) / len(neighs)
node.set("x", x)
node.set("y", y)

c = Counter(n.get("asn") for n in neighs)
most_common_asn, _ = c.most_common(1)[0]
node.set("asn", most_common_asn)

node.set("broadcast_domain", True)
node.set("device_type", "broadcast_domain")

autonetkit.update_http(anm)

Listing H.6: Create Layer 2 Network View

from autonetkit.ank import explode_nodes

g_l2_conn = anm.add_overlay("layer2_conn")
g_l2_conn.add_nodes_from(g_l2)
g_l2_conn.add_edges_from(g_l2.edges())

bc_nodes = g_l2.nodes(broadcast_domain=True)

explode_nodes(g_l2_conn, bc_nodes)

autonetkit.update_http(anm)

Listing H.7: Create Layer 2 Connectivity Network View

from autonetkit.ank import split, groupby, copy_attr_from
from netaddr import IPNetwork

g_ip = anm.add_overlay(" ip")
g_ip.add_nodes_from(g_l2)
g_ip.add_edges_from(g_l2.edges())

bc_nodes = g_l2.nodes(broadcast_domain=True)

bc_attrs = ["broadcast_domain", "device_type", "asn"]
for attr in bc_attrs:

copy_attr_from(g_l2, g_ip, attr, nbunch=bc_nodes)

# allocate loopback IPs
block = IPNetwork(" 10.0.0.0/16 ")
subnets = block.subnet(24)

loopback_allocations = {}

l3_nodes = g_ip.l3devices()
for asn, nodes in groupby("asn", l3_nodes):

asn_block = subnets.next()
loopback_allocations[asn] = asn_block
hosts = asn_block.iter_hosts()

for node in nodes:
ip = hosts.next()
node.set("loopback", ip)
node.loopback_zero.set(" ip", ip)
node.loopback_zero.set("subnet", IPNetwork(ip))

# allocate infra IPs
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block = IPNetwork("192.168.0.0/16 ")
subnets = block.subnet(24)

infra_allocations = {}

bc_nodes = g_ip.nodes(broadcast_domain=True)
for asn, nodes in groupby("asn", bc_nodes):

asn_block = subnets.next()
infra_allocations[asn] = asn_block
ptp_subnets = asn_block.subnet(30)
for node in nodes:

prefix = ptp_subnets.next()
node.set("subnet", prefix)

hosts = prefix.iter_hosts()
for neigh_iface in node.neighbor_interfaces():

address = hosts.next()
neigh_iface.set(" ip", address)
neigh_iface.set("subnet", prefix)

autonetkit.update_http(anm)

Listing H.8: Create IP Network View

g_ospf = anm.add_overlay("ospf")
g_ospf.add_nodes_from(g_in.routers())
g_ospf.add_edges_from(e for e in g_in.edges()

if e.src.asn == e.dst.asn)

for node in g_ospf:
for interface in node.physical_interfaces():

interface.set("area", 0)

node.loopback_zero.set("area", 0)

autonetkit.update_http(anm)

Listing H.9: Create OSPF Network View

from netaddr import IPSet

for node in g_ospf:
asn = node.get("asn")
# Get address blocks for this AS
infra_block = infra_allocations.get(asn, [])
lo_block = loopback_allocations.get(asn, [])
# Create set of all networks for this node
adv_prefixes = IPSet(infra_block)
adv_prefixes.update(lo_block)
# Store on the node
node.set("networks", adv_prefixes.iter_cidrs())

Listing H.10: OSPF Networks

g_ibgp = anm.add_overlay("ibgp")
g_ibgp.add_nodes_from(g_in.routers())
edges = [(s, t) for s in g_ibgp for t in g_ibgp

if s != t and s.asn == t.asn]

for e in edges:
src, dst = e
src_endpoint = src.add_interface(category="bgp_session")
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dst_endpoint = dst.add_interface(category="bgp_session")
src_endpoint.set("bound_to", src.loopback_zero)
dst_endpoint.set("bound_to", dst.loopback_zero)

g_ibgp.add_edge(src_endpoint, dst_endpoint)

autonetkit.update_http(anm)

Listing H.11: Create iBGP Network View

g_ebgp = anm.add_overlay("ebgp")
g_ebgp.add_nodes_from(g_in.routers())
edges = [e for e in g_in.edges()

if e.src.asn != e.dst.asn]

for e in edges:
# Obtain source and destination nodes
src = g_ebgp.node(e.src)
dst = g_ebgp.node(e.dst)
# Create BGP session termination points
src_endpoint = src.add_interface(category="bgp_session")
dst_endpoint = dst.add_interface(category="bgp_session")
# Bind session termination point to physical interface
src_endpoint.set("bound_to", e.src_int)
dst_endpoint.set("bound_to", e.dst_int)
# add session to g_ebgp
g_ebgp.add_edge(src_endpoint, dst_endpoint)

autonetkit.update_http(anm)

Listing H.12: Create eBGP Network View

# networks to advertise
from netaddr import IPSet

for node in g_ebgp:
adv_prefixes = IPSet()
if node.degree() == 0:

# Not an eBGP speaker
continue

asn = node.get("asn")
# Get address blocks for this AS
infra_block = infra_allocations.get(asn, [])
lo_block = loopback_allocations.get(asn, [])

# Create set of all networks for this node
adv_prefixes.update(infra_block)
adv_prefixes.update(lo_block)
# Store on the node
node.set("networks", adv_prefixes.iter_cidrs())

autonetkit.update_http(anm)

Listing H.13: eBGP Networks
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h.2.2 Compilation and Rendering

Netkit Platform Compiler

# Create Platform Compiler and Compile
sim_plat = simple_platform_compiler(anm, nidb)
sim_plat.compile()

Listing H.14: Netkit Platform Compiler

Quagga Device Compiler

from autonetkit.compilers.device import router_base

class simple_router_compiler(router_base.RouterCompiler):
loopback_zero_id = " lo :1 " # on linux loopback zero is 127.0.0.1

def compile(self, node):
zebra = self.zebra(node)
ssh = self.ssh(node)
interfaces = self.interfaces(node)
ospf = self.ospf(node)
bgp = self.bgp(node)

return {
"zebra": zebra,
"ssh": ssh,
" interfaces ": interfaces,
"ospf": ospf,
"bgp": bgp,
"hostname": str(node),
"asn": node.get("asn")

}

def zebra(self, node):
password = "zebra"
return {

"password": password
}

def ssh(self, node):
return {

"use_key": False
}

def interfaces(self, node):
# Append attributes to the interface, rather than add a stanza
ifaces = []
for interface in self.nidb[" interfaces "].get(node):

int_id = interface.get(" id")
ip = interface.get(" ip")
subnet = interface.get("subnet")
ifaces.append({" ip": ip,

" id": int_id,
"broadcast": subnet.broadcast,
"netmask": subnet.netmask
})

# add lo0
lo0 = self.anm[" ip"].node(node).loopback_zero
ip = lo0.get(" ip")
subnet = lo0.get("subnet")
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lo_zero_id = lo0["phy"].get(" id")
ifaces.append({" ip": ip,

" id": lo_zero_id,
"broadcast": subnet.broadcast,
"netmask": subnet.netmask
})

return ifaces

def ospf(self, node):
ospf_node = self.anm["ospf"].node(node)

process_id = ospf_node.get("process_id")

networks = []

lo0 = ospf_node.loopback_zero
subnet = lo0[" ip"].get("subnet")
networks.append({

"area": lo0.get("area"),
"network": subnet.cidr

})

for ospf_int in ospf_node.physical_interfaces():
if not ospf_int.is_bound:

continue

ip_int = ospf_int[" ip"]
area = ospf_int.get("area")
subnet = ip_int.get("subnet")
networks.append({

"network": subnet.cidr,
"area": area

})

return {
"networks": networks

}

def bgp(self, node):
ibgp_neighbors = []
g_ibgp = self.anm["ibgp"]

for session in g_ibgp.edges(node):
dst = session.dst
src_int = session.src_int
src_bound_int = src_int.get("bound_to")
update_source_ip = src_bound_int[" ip"].get(" ip")
dst_int = session.dst_int
dst_bound_int = dst_int.get("bound_to")
neigh_ip = dst_bound_int[" ip"].get(" ip")
desc = "Router %s" % dst
data = {

"update_source": update_source_ip,
"neigh_ip": neigh_ip,
"asn": dst.get("asn"), # should be same as node’s!
"desc": desc

}
ibgp_neighbors.append(data)

ebgp_neighbors = []
g_ebgp = self.anm["ebgp"]
ebgp_node = g_ebgp.node(node)
for session in g_ebgp.edges(node):

dst = session.dst
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src_int = session.src_int
src_bound_int = src_int.get("bound_to")
update_source_ip = src_bound_int[" ip"].get(" ip")
dst_int = session.dst_int
dst_bound_int = dst_int.get("bound_to")
neigh_ip = dst_bound_int[" ip"].get(" ip")
desc = "Router %s" % dst
data = {

"update_source": update_source_ip,
"neigh_ip": neigh_ip,
"asn": dst.get("asn"),
"desc": desc

}
ebgp_neighbors.append(data)

networks = ebgp_node.get("networks") or []
lo0 = self.anm[" ip"].node(node).loopback_zero
router_id = lo0.get(" ip")

return {
"ibgp_neighbors": ibgp_neighbors,
"ebgp_neighbors": ebgp_neighbors,
"networks": networks,
"router_id": router_id

}

Listing H.15: Quagga Device Compiler

h.2.3 Launching

ubuntu@ip-172-31-14-185:~/lab$ lstart -o --con0=none -p5

======================== Starting lab ===========================
Lab directory: /home/ubuntu/lab
Version: <unknown>
Author: <unknown>
Email: <unknown>
Web: <unknown>
Description:
<unknown>
=================================================================
You chose to use parallel startup.
Starting "as100r3"...
Starting "as1r1"...
Starting "as100r1"...
Starting "as100r2"...
Starting "as200r1"...
Starting "as20r1"...
Starting "as20r2"...
Starting "as20r3"...
Starting "as300r1"...
Starting "as300r2"...
Starting "as300r3"...
Starting "as300r4"...
Starting "as30r1"...
Starting "as40r1"...

The lab has been started.
=================================================================

Listing H.16: Launching Lab
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h.2.4 Simulation Results

as20r1# sh ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

I - ISIS, B - BGP, > - selected route, * - FIB route

C>* 127.0.0.0/8 is directly connected, lo
C>* 172.16.0.0/16 is directly connected, eth5
B>* 172.16.0.0/24 [200/0] via 172.16.1.2 (recursive via 192.168.1.1, eth4

), 00:02:04
O>* 172.16.1.1/32 [110/20] via 192.168.1.5, eth3, 00:02:17
O>* 172.16.1.2/32 [110/20] via 192.168.1.1, eth4, 00:02:17
O 172.16.1.3/32 [110/10] is directly connected, lo, 00:03:03
C>* 172.16.1.3/32 is directly connected, lo
B>* 172.16.2.0/24 [20/0] via 192.168.1.17, eth2, 00:02:34
B>* 172.16.3.0/24 [200/0] via 172.16.1.2 (recursive via 192.168.1.1, eth4

), 00:02:04
B>* 172.16.4.0/24 [20/0] via 192.168.1.13, eth1, 00:02:57
B>* 172.16.5.0/24 [20/0] via 192.168.4.1, eth0, 00:02:57
B>* 172.16.6.0/24 [200/0] via 172.16.1.2 (recursive via 192.168.1.1, eth4

), 00:01:55
B>* 192.168.0.0/24 [200/0] via 172.16.1.2 (recursive via 192.168.1.1,

eth4), 00:02:04
O 192.168.1.0/30 [110/10] is directly connected, eth4, 00:03:03
C>* 192.168.1.0/30 is directly connected, eth4
O 192.168.1.4/30 [110/10] is directly connected, eth3, 00:03:03
C>* 192.168.1.4/30 is directly connected, eth3
O>* 192.168.1.8/30 [110/20] via 192.168.1.1, eth4, 00:02:17

* via 192.168.1.5, eth3, 00:02:17
C>* 192.168.1.12/30 is directly connected, eth1
C>* 192.168.1.16/30 is directly connected, eth2
B>* 192.168.2.0/24 [200/0] via 172.16.1.2 (recursive via 192.168.1.1,

eth4), 00:02:04
B>* 192.168.3.0/24 [20/0] via 192.168.1.13, eth1, 00:02:57
B>* 192.168.4.0/24 [20/0] via 192.168.4.1, eth0, 00:02:57
C>* 192.168.4.0/30 is directly connected, eth0
B>* 192.168.5.0/24 [200/0] via 172.16.1.2 (recursive via 192.168.1.1,

eth4), 00:01:55

Listing H.17: show ip route output for as20r1

as1r1# sh ip bgp summary
BGP router identifier 172.16.0.1, local AS number 1
RIB entries 25, using 1600 bytes of memory
Peers 3, using 7548 bytes of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/
PfxRcd

192.168.0.1 4 20 6 11 0 0 0 00:01:44 7
192.168.0.5 4 30 8 10 0 0 0 00:01:16 7
192.168.2.5 4 40 4 9 0 0 0 00:01:17 4

Listing H.18: show ip bgp summary output for as1r1

as20r1# sh ip bgp summary
BGP router identifier 10.0.1.3, local AS number 20
RIB entries 25, using 1600 bytes of memory
Peers 5, using 12 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/
PfxRcd

10.0.1.1 4 20 15 19 0 0 0 00:12:20 4
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10.0.1.2 4 20 20 23 0 0 0 00:12:24 8
192.168.1.13 4 100 17 26 0 0 0 00:14:23 2
192.168.1.17 4 30 19 23 0 0 0 00:14:07 7
192.168.4.1 4 200 17 26 0 0 0 00:14:20 2

Total number of neighbors 5

Listing H.19: show ip bgp summary output for as20r1label

as300r1:~# traceroute lo:1.as100r2
traceroute to lo:1.as100r2 (lo:1.as100r2), 64 hops max, 40 byte packets
1 eth0.as300r3 (eth0.as300r3) 0 ms 0 ms 0 ms
2 eth1.as300r4 (eth1.as300r4) 1 ms 0 ms 0 ms
3 eth0.as300r2 (eth0.as300r2) 0 ms 1 ms 0 ms
4 eth1.as40r1 (eth1.as40r1) 1 ms 1 ms 1 ms
5 eth2.as1r1 (eth2.as1r1) 1 ms 1 ms 1 ms
6 eth1.as20r3 (eth1.as20r3) 1 ms 1 ms 1 ms
7 eth2.as20r2 (eth2.as20r2) 1 ms 1 ms 1 ms
8 eth2.as100r1 (eth2.as100r1) 1 ms 1 ms 1 ms
9 lo:1.as100r2 (lo:1.as100r2) 1 ms 1 ms 1 ms

Listing H.20: Post-processed output of traceroute from as300r1 to as100r2
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h.3 code for complete small internet case study

h.3.1 Network Whiteboard

import autonetkit
anm = autonetkit.NetworkModel()

Listing H.21: Initialisation

import autonetkit.load.graphml as graphml
from collections import namedtuple

with open("small_internet_complete .graphml") as fh:
data = fh.read()

input_graph = graphml.load_graphml(data)
nodes = {}
for n, data in input_graph.nodes(data=True):

nodes[n] = {
" id": n, "asn": data["asn"], "device_type": data["device_type"],
"x": int(data["x"] * 1.5), "y": int(data["y"] * 1.5),

}

edge_tuple = namedtuple( ’Edge’,
[" src ", "dst", "subnet", " src_id ", "dst_id", " src_ip ", "dst_ip"])

edges = []
for s, t, data in input_graph.edges(data=True):

edges.append((s, t, data.get(" src_id "), data.get("dst_id"),
data.get("subnet"), data.get(" src_ip "), data.get("dst_ip"),
data.get("bgp_policy")))

Listing H.22: Load Nodes and Edges

import autonetkit
anm = autonetkit.NetworkModel()
g_in = anm.add_overlay("input")

for n, d in nodes.items():
g_in.add_node(n, x=d["x"], device_type=d["device_type"],

y=d["y"], asn=d["asn"])

# mark routers to simulate
for n in g_in:

if n.is_router():
n.set("simulate", True)

# map roles
for node in g_in:

asn = node.get("asn")
node.set("bgp_role", bgp_roles[asn])

# map redist policy
for node in g_in:

asn = node.get("asn")
pol = bgp_redist_policy.get(asn)
if pol == "ibgp":

node.set("ibgp", True)
elif pol == " redistribute_igp ":

node.set("redistribute_bgp_to_igp", True)

Listing H.23: Load Network Whiteboard nodes
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for edge in edges:
src, dst, src_id, dst_id, subnet, src_ip, dst_ip, bgp_policy = edge
src = g_in.node(src)
dst = g_in.node(dst)
src_iface = src.add_interface()
dst_iface = dst.add_interface()

prefix = prefix_split = []

if subnet != None:
prefix, prefix_len = subnet.split("/")
prefix_split = prefix.split(" . ")

if src_id:
src_iface.set(" id", src_id)
src_iface.set("description", src_id)

if src_ip != None:
src_prefix = prefix_split[0:3]
src_prefix.append(src_ip)
src_prefix = " . ".join(src_prefix)
src_iface.set(" ip", src_prefix)
src_iface.set("subnet", subnet)

if dst_id:
dst_iface.set(" id", dst_id)
dst_iface.set("description", dst_id)

if dst_ip != None:
dst_prefix = prefix_split[0:3]
dst_prefix.append(dst_ip)
dst_prefix = " . ".join(dst_prefix)
dst_iface.set(" ip", dst_prefix)
dst_iface.set("subnet", subnet)

edge = g_in.add_edge(src_iface, dst_iface)

if bgp_policy != None:
edge.set("bgp_policy", bgp_policy)

g_in.allocate_input_interfaces()
autonetkit.update_http(anm)

Listing H.24: Load Network Whiteboard edges

h.3.2 Design Functions

g_phy = anm[ ’phy’]
g_phy.add_nodes_from(g_in, retain=["asn", "device_type", "x", "y"])
g_phy.update(platform=" netkit ", syntax="quagga")

g_phy.add_edges_from(g_in.edges())

Listing H.25: Create Physical Network View

def neigh_ave_xy(nodes):
x = sum(neigh["phy"].get("x") for neigh in neighs) / len(neighs)
y = sum(neigh["phy"].get("y") for neigh in neighs) / len(neighs)
return (x, y)

Listing H.26: Sum Neighbor Averages

from autonetkit.ank import split
from collections import Counter
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g_l2 = anm.add_overlay(" layer2 ")
g_l2.add_nodes_from(g_phy)
g_l2.add_edges_from(g_phy.edges())

# Split the point-to-point edges to add a collision domain
edges_to_split = [edge for edge in g_l2.edges()

if edge.src.is_l3device() and edge.dst.is_l3device()]

for edge in edges_to_split:
edge.split = True # mark as split for use in building nidb

split_created_nodes = split(g_l2, edges_to_split, id_prepend= ’bd_ ’)

for node in split_created_nodes:
# set midway x, y for plot
neighs = node.neighbors()
x, y = neigh_ave_xy(neighs)
node.set("x", x)
node.set("y", y)

neigh_asns = {n.get("asn") for n in neighs}
if len(neigh_asns) == 1:

node.set("asn", neigh_asns.pop())
else:

node.set("asn", None) # inter-AS link

c = Counter(n.get("asn") for n in neighs)
most_common_asn, _ = c.most_common(1)[0]
node.set("broadcast_domain", True)
node.set("device_type", "broadcast_domain")

for switch in g_l2.switches():
pn_id = "bc_" + switch.get(" id")
bc = g_l2.add_node(pn_id)
g_phy.add_node(bc)

bc.set("broadcast_domain", True)
bc.set("device_type", "broadcast_domain")
bc.set("asn", switch.get("asn"))

for edge in switch.edges():
dst = edge.dst
dst_int = edge.dst_int
src_int = bc.add_interface()
g_l2.add_edge(src_int, dst_int)

neighs = bc.neighbors()
x, y = neigh_ave_xy(neighs)
bc.set("x", x)
bc.set("y", y)
g_l2.remove_node(switch)

autonetkit.update_http(anm)

Listing H.27: Create Layer 2 Network View

from autonetkit.ank import explode_nodes

g_l2_conn = anm.add_overlay("layer2_conn")
g_l2_conn.add_nodes_from(g_l2)
g_l2_conn.add_edges_from(g_l2.edges())
bc_nodes = g_l2.nodes(broadcast_domain=True)
explode_nodes(g_l2_conn, bc_nodes)
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autonetkit.update_http(anm)

Listing H.28: Create Layer 2 Connectivity Network View

from autonetkit.ank import split, groupby, copy_attr_from,
copy_int_attr_from

from netaddr import IPNetwork, IPAddress
from collections import defaultdict

g_ip = anm.add_overlay(" ip")
g_ip.add_nodes_from(g_l2)
g_ip.add_edges_from(g_l2.edges())

bc_nodes = g_l2.nodes(broadcast_domain=True)

copy_int_attr_from(g_in, g_ip, " ip")
copy_int_attr_from(g_in, g_ip, "subnet")

bc_attrs = ["broadcast_domain", "device_type", "asn"]
for attr in bc_attrs:

copy_attr_from(g_l2, g_ip, attr, nbunch=bc_nodes)

infra_allocations = defaultdict(list)
host_allocations = defaultdict(list)

bc_nodes = g_ip.nodes(broadcast_domain=True)
for asn, nodes in groupby("asn", bc_nodes):

nodes = list(nodes) # generator to list
for bc in nodes:

neigh_ips = set()
neigh_subnets = set()
for neigh_int in bc.neighbor_interfaces():

neigh_ip = neigh_int.get(" ip")

if neigh_ip and neigh_ip != None:
neigh_ip = IPAddress(neigh_ip)
neigh_int.set(" ip", neigh_ip)
neigh_ips.add(neigh_ip)

neigh_sn = neigh_int.get("subnet")
if neigh_sn and neigh_sn != None:

neigh_sn = IPNetwork(neigh_sn)
neigh_int.set("subnet", neigh_sn)
neigh_subnets.add(neigh_sn)

if len(neigh_subnets) == 1:
sn = neigh_subnets.pop()
bc.set("subnet", sn)

else:
print "Error : Subnet mismatch for %s" % bc

if asn is None:
# inter-AS links
pass

else:
infra_allocations[asn].append(bc.get("subnet"))
if any(n.is_server() for n in bc.neighbors()):

host_allocations[asn].append(bc.get("subnet"))

autonetkit.update_http(anm)

Listing H.29: Create IP Network View

g_rip = anm.add_overlay(" rip ")
g_rip.add_nodes_from(g_in.routers())

437



H.3 code for complete small internet case study

g_rip.add_edges_from(e for e in g_l2_conn.edges()
if e.src.asn == e.dst.asn)

Listing H.30: Create RIP Network View

# redistribute connected prefixes
for node in g_rip:

if node.degree() == 0:
continue

l2_neighs = node["layer2_conn"].neighbors()
if any(n.is_server() for n in l2_neighs):

node.set(" redistribute_connected", True)

autonetkit.update_http(anm)

Listing H.31: Set RIP Redistribution

# rip networks
from netaddr import IPSet

for node in g_rip:
asn = node.get("asn")
ip_host = host_allocations.get(asn, [])
adv_prefixes = IPSet(ip_host)

# adv_prefixes.update(ip_host)
node.set("networks", adv_prefixes.iter_cidrs())

Listing H.32: Set RIP Advertisement Networks

g_ibgp = anm.add_overlay("ibgp")
g_ibgp.add_nodes_from(g_in.routers())

ibgp_routers = set(g_in.routers(ibgp=True))

edges = [e for e in g_l2_conn.edges()
if e.src in ibgp_routers and e.dst in ibgp_routers
and e.src.asn == e.dst.asn]

for e in edges:
src = g_ibgp.node(e.src)
dst = g_ibgp.node(e.dst)
src_endpoint = src.add_interface(category="bgp_session")
dst_endpoint = dst.add_interface(category="bgp_session")
src_endpoint.set("bound_to", e.src_int)
dst_endpoint.set("bound_to", e.dst_int)

g_ibgp.add_edge(src_endpoint, dst_endpoint)

autonetkit.update_http(anm)

Listing H.33: Create iBGP Network View

g_ebgp = anm.add_overlay("ebgp")
g_ebgp.add_nodes_from(g_in.routers())
edges = [e for e in g_in.edges()

if e.src.asn != e.dst.asn]

for e in edges:
# Obtain source and destination nodes
src = g_ebgp.node(e.src)
dst = g_ebgp.node(e.dst)
# Create BGP session termination points
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src_endpoint = src.add_interface(category="bgp_session")
dst_endpoint = dst.add_interface(category="bgp_session")
# Bind session termination point to physical interface
src_endpoint.set("bound_to", e.src_int)
dst_endpoint.set("bound_to", e.dst_int)
# add session to g_ebgp
g_ebgp.add_edge(src_endpoint, dst_endpoint)

autonetkit.update_http(anm)

Listing H.34: Create eBGP Network View

# now apply ebgp policies
from autonetkit.ank import copy_attr_from, copy_edge_attr_from
copy_attr_from(g_in, g_ebgp, "bgp_role")
copy_edge_attr_from(g_in, g_ebgp, "bgp_policy")

def bgp_rank(role):
ranks = {"b": 1, "p": 2, "c": 3}
return ranks.get(role, -1)

Listing H.35: Apply eBGP Policies

# networks to advertise
from netaddr import IPSet

default_route = IPNetwork(" 0.0.0.0/0 ")

for node in sorted(g_ebgp):
adv_prefixes = set()
if node.degree() == 0:

continue

asn = node.get("asn")
ip_infra = infra_allocations.get(asn, [])
ip_host = host_allocations.get(asn, [])

# and infra links
node_role = node.get("bgp_role")
if node_role == "b":

# backbone, advertise default route also
adv_prefixes.add(default_route)

for edge in node.edges():
src_int = edge.src_int
dst = edge.dst
dst_role = dst.get("bgp_role")
advertise = False
node_rank = bgp_rank(node_role)
dst_rank = bgp_rank(dst_role)

if ((node_rank < dst_rank)
or (node_rank == dst_rank and node.get("asn") < dst.get("

asn"))):
# get physical interface session is bound to
bound_int = src_int.get("bound_to")
subnet = bound_int[" ip"].get("subnet")

# upstream of destination, advertise prefix
adv_prefixes.add(subnet)

adv_prefixes.update(ip_infra)
adv_prefixes.update(ip_host)
if node_role == "c":
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# customer, advertise as a /16
adv_prefixes = {x.supernet(16)[0] if x.prefixlen > 16 else x

for x in adv_prefixes}

node.set("networks", adv_prefixes)

# and apply load share policy
for asn, policy in bgp_load_share_policy.items():

if policy != True:
continue

asn_ebgp_nodes = [n for n in g_ebgp.nodes(asn=asn) if n.degree() > 0]
# only load share common prefixes
common_networks = set()
networks = [n.get("networks") for n in asn_ebgp_nodes]
asn_prefixes = set.intersection(*networks)
# now split and allocate
if len(asn_ebgp_nodes) != 2:

# Future work to extend to support splitting across more than 2
nodes

break

for prefix in asn_prefixes:
# assume /16
split_prefixes = prefix.subnet(17)
for node in sorted(asn_ebgp_nodes):

node_adv_prefixes = node.get("networks")
node_adv_prefixes.add(split_prefixes.next())
node.set("networks", node_adv_prefixes)

# for customer, also store the advertised prefix to form the peer asXIn
# prefix-list
for node in sorted(g_ebgp):

node_role = node.get("bgp_role")
if node.degree() > 0 and node_role == "c":

node_adv_prefixes = node.get("networks")
for peer in node.neighbors():

cust_asn_prefixes = peer.get("customer_asn_prefixes")
if not cust_asn_prefixes:

cust_asn_prefixes = {}

cust_asn_prefixes[node.get("asn")] = node_adv_prefixes

# and store result
peer.set("customer_asn_prefixes", cust_asn_prefixes)

autonetkit.update_http(anm)

Listing H.36: Add eBGP Prefix Advertisements

backbones = set(g_ebgp.nodes(bgp_role="b"))
providers = set(g_ebgp.nodes(bgp_role="p"))
customers = set(g_ebgp.nodes(bgp_role="c"))

def appendPlIn(iface, policy):
pol = iface.get("plIn") or []
if policy not in pol:

pol.append(policy)
iface.set("plIn", pol)

def appendPlOut(iface, policy):
pol = iface.get("plOut") or []
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if policy not in pol:
pol.append(policy)

iface.set("plOut", pol)

def appendRmIn(iface, policy):
pol = iface.get("rmIn") or []
if policy not in pol:

pol.append(policy)
iface.set("rmIn", pol)

def appendRmOut(iface, policy):
pol = iface.get("rmOut") or []
if policy not in pol:

pol.append(policy)
iface.set("rmOut", pol)

def appendRmDo(iface, policy):
pol = iface.get("rmDo") or []
if policy not in pol:

pol.append(policy)
iface.set("rmDo", pol)

for node in backbones:
for edge in node.edges():

dst = edge.dst
src_int = edge.src_int
dst_int = edge.dst_int

if dst in backbones:
pass # b-b link

elif dst in providers:
src_int.set(" default_originate ", True)
appendPlIn(src_int, "acceptAny")
appendPlOut(src_int, "defaultOut")
pass # b -> p

elif dst in customers:
pass # invalid b -> c

for node in providers:
prefix_lists = {}
for edge in node.edges():

dst = edge.dst
src_int = edge.src_int
dst_int = edge.dst_int

if dst in backbones:
pass # p-b link

elif dst in providers:
# p -> p
appendRmDo(src_int, "dontUseMe")
appendRmOut(src_int, "dontUseMe")
appendPlOut(src_int, "defaultOut")

elif dst in customers:
# p -> c
src_int.set(" default_originate ", True)
appendPlOut(src_int, "defaultOut")
dst_asn = dst.get("asn")
plist_name = "as%sIn" % dst_asn
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prefix_lists[plist_name] = dst_asn
appendPlIn(src_int, plist_name)

node.set(" pl_to_create ", prefix_lists)

for node in customers:
for edge in node.edges():

dst = edge.dst
src_int = edge.src_int
dst_int = edge.dst_int

if dst in backbones:
pass # invalid c-b link

elif dst in providers:
# c -> p
if edge.get("bgp_policy"):

edge_pol = edge.get("bgp_policy")
if edge_pol == "backup":

appendRmOut(src_int, "metricOut")
appendRmIn(src_int, " localPrefIn ")

appendPlIn(src_int, "defaultIn")
appendPlOut(src_int, "mineOutOnly")

elif dst in customers:
pass # invalid c -> c

Listing H.37: Apply per-node eBGP policies

prefix_list_library = {
"defaultOut": [("permit", " 0.0.0.0/0 ")],
"defaultOk": [("permit", " 0.0.0.0/0 ")],
"defaultIn": [("permit", " 0.0.0.0/0 ")],
"defaultOut": [("permit", " 0.0.0.0/0 ")],
"acceptAny": [("permit", "any")]

}

# Create prefix lists
for node in sorted(g_ebgp):

cust_asn_prefixes = node.get("customer_asn_prefixes")
asn = node.get("asn")
asn_host_prefixes = host_allocations.get(asn, [])
pl_to_create = node.get(" pl_to_create ") or {}

prefix_lists = {}
pls = set()

endpoints = node.interfaces(category="bgp_session")
for ep in endpoints:

pls.update(p for p in ep.get("plIn") or [])
pls.update(p for p in ep.get("plOut") or [])

for pl in pls:
# lookup
if pl in prefix_list_library:

prefix_lists[pl] = prefix_list_library[pl]
else:

if pl == "mineOutOnly":
prefix_lists[pl] = [("permit", str(prefix))

for prefix in node.get("networks")]
else:

pass
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for pl_name, dst_asn in pl_to_create.items():
cust_prefixes = cust_asn_prefixes[dst_asn]
prefix_lists[pl_name] = [("permit", str(prefix))

for prefix in cust_prefixes]

node.set(" prefix_lists ", prefix_lists)
node.set(" prefix_list_keys ", prefix_lists.keys())

autonetkit.update_http(anm)

Listing H.38: Create Prefix Lists

# route maps

for node in g_ebgp:
asn = node.get("asn")
route_maps = {}
access_lists = {}

endpoints = node.interfaces(category="bgp_session")
rms = set()
for ep in endpoints:

rms.update(p for p in ep.get("rmIn") or [])
rms.update(p for p in ep.get("rmOut") or [])
rms.update(p for p in ep.get("rmDo") or [])

for rm in rms:
if rm == "dontUseMe":

route_maps[rm] = [("prepend", [asn, asn, asn])]
elif rm == " localPrefIn ":

route_maps[rm] = [(" local−preference", 90)]
elif rm == "metricOut":

route_maps[rm] = [
("match−ip−address", "myAggregate"),
("metric", 10)]

# This could be parameterised further
myAggregate = []
for prefix in infra_allocations[asn]:

myAggregate.append(("permit", str(prefix)))
access_lists["myAggregate"] = myAggregate

else:
print "ERROR: Unknown route map", rm

node.set("route_maps", route_maps)
node.set(" access_lists ", access_lists)

autonetkit.update_http(anm)

Listing H.39: Create Route Maps

# routing protocol interactions
for node in g_rip:

redist = node["input"].get("redistribute_bgp_to_igp")
if not redist:

continue

if node["ebgp"].degree() > 0:
node.set(" redistribute_bgp", True)

autonetkit.update_http(anm)

Listing H.40: Set Routing Protocol Redistribution
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h.3.3 Templates

router rip {{node.rip.process_id}}
{% if node.rip.redistribute_connected %}

redistribute connected
{% endif %}
{% if node.rip.redistribute_bgp %}

redistribute bgp
{% endif %}
{% for network in node.rip.networks %}

network {{network.cidr}}
{% endfor %}

!

Listing H.41: RIP Template

!
hostname bgpd
password zebra
enable password zebra
!
router bgp {{node.asn}}
{% for network in node.bgp.networks %}
network {{network}}
{% endfor %}
{% for neigh in node.bgp.ibgp_neighbors %}
!
neighbor {{neigh.neigh_ip}} remote-as {{neigh.asn}}
neighbor {{neigh.neigh_ip}} description {{neigh.desc}} (iBGP)
{% endfor %}
!
{% for neigh in node.bgp.ebgp_neighbors %}
! {{neigh.neighbor}}
neighbor {{neigh.neigh_ip}} remote-as {{neigh.asn}}
neighbor {{neigh.neigh_ip}} description {{neigh.desc}} (eBGP)
{% if neigh.default_originate %}
neighbor {{neigh.neigh_ip}} default-originate
{% endif %}

{% for plName in neigh.plOut %}
neighbor {{neigh.neigh_ip}} prefix-list {{plName}} out

{% endfor %}
{% for rmName in neigh.rmDo %}

neighbor {{neigh.neigh_ip}} default-originate route-map {{rmName}}
{% endfor %}
{% for rmName in neigh.rmOut %}

neighbor {{neigh.neigh_ip}} route-map {{rmName}} out
{% endfor %}
{% for plName in neigh.plIn %}

neighbor {{neigh.neigh_ip}} prefix-list {{plName}} in
{% endfor %}
{% for rmName in neigh.rmIn %}

neighbor {{neigh.neigh_ip}} route-map {{rmName}} in
{% endfor %}

{% endfor %}
!
!
{% for name, data in node.bgp.prefix_lists.items() %}

{% for permitDeny, prefix in data %}
ip prefix-list {{name}} {{permitDeny}} {{prefix}}

{% endfor %}
!
{% endfor %}
!
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{% for name, data in node.bgp.route_maps.items() %}
route-map {{name}} permit 10

{% for keyword, value in data %}
{{keyword}} {{value}}

{% endfor %}
!
{% endfor %}
!
{% for name, data in node.bgp.access_lists.items() %}

{% for permitDeny, prefix in data %}
access-list {{name}} {{permitDeny}} {{prefix}}

{% endfor %}
!
{% endfor %}
!
log file /var/log/zebra/bgpd.log
!
debug bgp
debug bgp events
debug bgp filters
debug bgp fsm
debug bgp keepalives
debug bgp updates
!

Listing H.42: BGP Template
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h.3.4 Compilation and Rendering

Netkit Platform Compiler

# Create Platform Compiler and Compile
sim_plat = simple_platform_compiler(anm, nidb)
sim_plat.compile()

Listing H.43: Netkit Platform Compiler

Quagga Device Compiler

from autonetkit.compilers.device import router_base

class simple_router_compiler(router_base.RouterCompiler):

def compile(self, node):
zebra = self.zebra(node)
ssh = self.ssh(node)
interfaces = self.interfaces(node)
rip = self.rip(node)
bgp = self.bgp(node)

return {
"zebra": zebra,
"ssh": ssh,
" interfaces ": interfaces,
" rip ": rip,
"bgp": bgp,
"hostname": str(node),
"asn": node.get("asn")

}

def zebra(self, node):
password = "zebra"
return {

"password": password
}

def ssh(self, node):
return {

"use_key": False
}

def interfaces(self, node):
ifaces = []
for interface in self.nidb[" interfaces "].get(node):

print " iface is ", interface
int_id = interface.get(" id")
ip = interface.get(" ip")
subnet = interface.get("subnet")
ifaces.append({" ip": ip,

" id": int_id,
"broadcast": subnet.broadcast,
"netmask": subnet.netmask})

return ifaces

def rip(self, node):
rip_node = self.anm[" rip "].node(node)
networks = rip_node.get("networks") or []
redistribute_connected = rip_node.get(" redistribute_connected")

or False
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redistribute_bgp = rip_node.get(" redistribute_bgp") or False

return {
"networks": networks,
" redistribute_connected": redistribute_connected,
" redistribute_bgp": redistribute_bgp,

}

def process_route_maps(self, route_maps):
# maps from generic route-map command to Quagga-specific syntax
retval = {}

lookup_table = {
" local−preference": " set local−preference",
"match−ip−address": "match ip address",
"metric": " set metric"

}

for name, data in route_maps.items():
processed = []
for action, value in data:

if action in lookup_table:
processed.append((lookup_table[action], value))

elif action == "prepend":
formatted_value = " ".join(str(v) for v in value)
processed.append((" set as−path prepend",

formatted_value))
else:

print "Unknown action : %s" % action

retval[name] = processed

return retval

def bgp(self, node):
ibgp_neighbors = []
g_ibgp = self.anm["ibgp"]

for session in g_ibgp.edges(node):
dst = session.dst
dst_int = session.dst_int
dst_bound_int = dst_int.get("bound_to")
neigh_ip = dst_bound_int[" ip"].get(" ip")
desc = "Router %s" % dst
data = {

"neigh_ip": neigh_ip,
"asn": dst.get("asn"),
"desc": desc

}
ibgp_neighbors.append(data)

ebgp_neighbors = []
g_ebgp = self.anm["ebgp"]
ebgp_node = g_ebgp.node(node)
for session in g_ebgp.edges(node):

plIn = session.src_int.get("plIn") or []
plOut = session.src_int.get("plOut") or []
rmIn = session.src_int.get("rmIn") or []
rmOut = session.src_int.get("rmOut") or []
rmDo = session.src_int.get("rmDo") or []
default_originate = session.src_int.get(

" default_originate ") or False

dst = session.dst
dst_int = session.dst_int
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dst_bound_int = dst_int.get("bound_to")
neigh_ip = dst_bound_int[" ip"].get(" ip")
desc = "Router %s" % dst
data = {

"neigh_ip": neigh_ip,
"asn": dst.get("asn"),
"desc": desc,
" default_originate ": default_originate,
"plIn": plIn,
"plOut": plOut,
"rmIn": rmIn,
"rmOut": rmOut,
"rmDo": rmDo

}
ebgp_neighbors.append(data)

networks = ebgp_node.get("networks") or []
prefix_lists = ebgp_node.get(" prefix_lists ")
route_maps = self.process_route_maps(ebgp_node.get("route_maps"))
access_lists = ebgp_node.get(" access_lists ")
return {

"ibgp_neighbors": ibgp_neighbors,
"ebgp_neighbors": ebgp_neighbors,
"networks": networks,
" prefix_lists ": prefix_lists,
"route_maps": route_maps,
" access_lists ": access_lists

}

Listing H.44: Quagga Device Compiler

448



H.3 code for complete small internet case study

Example Router Configurations

!
hostname bgpd
password zebra
enable password zebra
!
router bgp 30
network 11.0.0.8/30
network 30.3.3.0/24
!
!
neighbor 11.0.0.9 remote-as 300
neighbor 11.0.0.9 description Router as300r1 (eBGP)
neighbor 11.0.0.9 default-originate
neighbor 11.0.0.9 prefix-list defaultOut out
neighbor 11.0.0.9 prefix-list as300In in
!
neighbor 11.0.0.26 remote-as 1
neighbor 11.0.0.26 description Router as1r1 (eBGP)
!
neighbor 11.0.0.17 remote-as 20
neighbor 11.0.0.17 description Router as20r1 (eBGP)
neighbor 11.0.0.17 default-originate route-map dontUseMe
neighbor 11.0.0.17 route-map dontUseMe out
!
!
ip prefix-list as300In permit 200.1.128.0/17
!
ip prefix-list defaultOut permit 0.0.0.0/0
!
!
route-map dontUseMe permit 10
set as-path prepend 30 30 30
!
!
!
log file /var/log/zebra/bgpd.log
!
debug bgp
debug bgp events
debug bgp filters
debug bgp fsm
debug bgp keepalives
debug bgp updates
!

Listing H.45: BGPd configuration for as30r1 from Complete Small Internet
Case Study

h.3.5 Simulation Results

as1r1# sh ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

I - ISIS, B - BGP, > - selected route, * - FIB route

B>* 11.0.0.0/30 [20/0] via 11.0.0.21, eth2, 00:01:07
B>* 11.0.0.4/30 [20/0] via 11.0.0.21, eth2, 00:00:37
B>* 11.0.0.8/30 [20/0] via 11.0.0.25, eth1, 00:01:07
B>* 11.0.0.12/30 [20/0] via 11.0.0.29, eth0, 00:01:06
B>* 11.0.0.16/30 [20/0] via 11.0.0.21, eth2, 00:00:37
C>* 11.0.0.20/30 is directly connected, eth2
C>* 11.0.0.24/30 is directly connected, eth1
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C>* 11.0.0.28/30 is directly connected, eth0
B>* 11.0.0.32/30 [20/0] via 11.0.0.21, eth2, 00:00:37
B>* 20.1.1.0/24 [20/0] via 11.0.0.21, eth2, 00:01:07
B>* 30.3.3.0/24 [20/0] via 11.0.0.25, eth1, 00:01:07
B>* 40.4.4.0/24 [20/0] via 11.0.0.29, eth0, 00:01:06
B>* 100.1.0.0/16 [20/0] via 11.0.0.21, eth2, 00:00:37
C>* 127.0.0.0/8 is directly connected, lo
B>* 200.1.0.0/16 [20/0] via 11.0.0.25, eth1, 00:01:07
B>* 200.1.0.0/17 [20/0] via 11.0.0.25, eth1, 00:01:07
B>* 200.1.128.0/17 [20/0] via 11.0.0.29, eth0, 00:01:06
B>* 200.2.0.0/16 [20/0] via 11.0.0.21, eth2, 00:00:37

as20r1# sh ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

I - ISIS, B - BGP, > - selected route, * - FIB route

B>* 0.0.0.0/0 [200/0] via 11.0.0.22 (recursive via 20.1.1.3, eth2),
00:06:06

B 11.0.0.0/30 [200/0] via 20.1.1.2, eth2, 00:06:06
R>* 11.0.0.0/30 [120/2] via 20.1.1.2, eth2, 00:06:12
C>* 11.0.0.4/30 is directly connected, eth1
C>* 11.0.0.16/30 is directly connected, eth3
R>* 11.0.0.20/30 [120/2] via 20.1.1.3, eth2, 00:06:12
C>* 11.0.0.32/30 is directly connected, eth0
C>* 20.1.1.0/24 is directly connected, eth2
B>* 100.1.0.0/16 [200/0] via 11.0.0.1 (recursive via 20.1.1.2, eth2),

00:06:06
C>* 127.0.0.0/8 is directly connected, lo
B>* 200.2.0.0/16 [20/0] via 11.0.0.33, eth0, 00:06:08

BGP table version is 0, local router ID is 11.0.0.18
Status codes: s suppressed, d damped, h history, * valid, > best, i -

internal,
r RIB-failure, S Stale, R Removed

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

* 0.0.0.0 11.0.0.17 0 20 20 20 20
i

*> 11.0.0.26 0 1 i

*> 11.0.0.8/30 0.0.0.0 0 32768 i

*> 30.3.3.0/24 0.0.0.0 0 32768 i

*> 200.1.0.0/16 11.0.0.9 0 0 300 i

*> 200.1.0.0/17 11.0.0.9 0 0 300 i

as300r1# sh ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

I - ISIS, B - BGP, > - selected route, * - FIB route

B>* 0.0.0.0/0 [20/0] via 11.0.0.10, eth0, 00:23:15
C>* 11.0.0.8/30 is directly connected, eth0
C>* 127.0.0.0/8 is directly connected, lo
C>* 200.1.0.0/18 is directly connected, eth1
R>* 200.1.64.0/18 [120/3] via 200.1.0.2, eth1, 00:23:16
R>* 200.1.128.0/17 [120/2] via 200.1.0.2, eth1, 00:23:16
as300r1#

bgpd# sh ip bgp
BGP table version is 0, local router ID is 11.0.0.17
Status codes: s suppressed, d damped, h history, * valid, > best, i -

internal,
r RIB-failure, S Stale, R Removed

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path
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* 0.0.0.0 11.0.0.18 0 30 30 30 30
i

*>i 11.0.0.22 100 0 1 i

*>i11.0.0.0/30 20.1.1.2 0 100 0 i

*> 11.0.0.4/30 0.0.0.0 0 32768 i

*> 11.0.0.16/30 0.0.0.0 0 32768 i

*> 11.0.0.32/30 0.0.0.0 0 32768 i

* i20.1.1.0/24 20.1.1.3 0 100 0 i

* i 20.1.1.2 0 100 0 i

*> 0.0.0.0 0 32768 i

*>i100.1.0.0/16 11.0.0.1 0 100 0 100 i

*> 200.2.0.0/16 11.0.0.33 0 0 200 i

as300r4# sh ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

I - ISIS, B - BGP, > - selected route, * - FIB route

R>* 0.0.0.0/0 [120/2] via 200.1.64.1, eth0, 00:24:59
C>* 127.0.0.0/8 is directly connected, lo
R>* 200.1.0.0/18 [120/2] via 200.1.128.1, eth1, 00:25:05
C>* 200.1.64.0/18 is directly connected, eth0
C>* 200.1.128.0/17 is directly connected, eth1

451



H.4 code for vlan case study

h.4 code for vlan case study

h.4.1 Network Whiteboard

import autonetkit.load.graphml as graphml
with open("vlans .graphml") as fh:

data = fh.read()

input_graph = graphml.load_graphml(data)
nodes = {}

switches = {4, 5, 8, 10, 14}

for n, data in input_graph.nodes(data=True):
if int(n) in switches:

device_type = "switch"
else:

device_type = " router"

nodes[n] = {
" id": n,
"asn": data["asn"],
"device_type": device_type,
"x": int(data["x"] * 1.2),
"y": int(data["y"] * 1.2),

}

edges = []
for s, t, data in input_graph.edges(data=True):

edges.append((s, t, data.get(" label ")))

Listing H.46: Prepare Network Whiteboard

import autonetkit
anm = autonetkit.NetworkModel()
g_in = anm.add_overlay("input")

nodes = {
"1": {"y": 96, "x": 522, "device_type": " router", "asn": 1},
"2": {"y": 70, "x": 927, "device_type": " router", "asn": 1},
"3": {"y": 536, "x": 114, "device_type": " router", "asn": 1},
"4": {"y": 536, "x": 522, "device_type": "switch", "asn": 1},
"5": {"y": 530, "x": 927, "device_type": "switch", "asn": 1},
"6": {"y": 530, "x": 1306, "device_type": " router", "asn": 1},
"7": {"y": 962, "x": 114, "device_type": " router", "asn": 1},
"8": {"y": 962, "x": 522, "device_type": "switch", "asn": 1},
"9": {"y": 959, "x": 927, "device_type": " router", "asn": 1},
"10": {"y": 959, "x": 1306, "device_type": "switch", "asn": 1},
"11": {"y": 959, "x": 1705, "device_type": " router", "asn": 1},
"12": {"y": 1388, "x": 529, "device_type": " router", "asn": 1},
"13": {"y": 1388, "x": 927, "device_type": " router", "asn": 1},
"14": {"y": 1388, "x": 1316, "device_type": "switch", "asn": 1}

}

for n, d in nodes.items():
g_in.add_node(n, x=d["x"] / 2,

device_type=d["device_type"],
y=d["y"] / 2, asn=d["asn"])

Listing H.47: Create Network Whiteboard
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edges = [("11", "10", "2"), ("13", "8", "1"),
("13", "14", "2"), ("12", "8", "3"),
("14", "10", None), ("1", "4", "1"),
("3", "4", "1"), ("2", "5", "3"),
("4", "5", None), ("7", "8", "2"),
("6", "10", "1"), ("6", "5", "2"),
("9", "10", "1"), ("9", "8", "1"),
("8", "4", None)]

for s, t, vlan in edges:
src = g_in.node(s)
dst = g_in.node(t)
src_iface = src.add_interface()
dst_iface = dst.add_interface()

if vlan:
dst_iface.set("vlan", vlan)

g_in.add_edge(src_iface, dst_iface)

Listing H.48: Add Edges to Network Whiteboard

h.4.2 Design Functions

g_phy = anm[ ’phy’]
g_phy.add_nodes_from(g_in, retain=["asn", "device_type", "x", "y"])
g_phy.update(platform=" netkit ", syntax="quagga")

g_phy.add_edges_from(g_in.edges())

Listing H.49: Create Physical Network View

from autonetkit.ank import copy_int_attr_from, connected_subgraphs
from collections import defaultdict
from itertools import count
bc_node_id = count()

g_vlan = anm.add_overlay("vlan")
g_vlan.add_nodes_from(g_phy)
g_vlan.add_edges_from(g_phy.edges())
autonetkit.update_http(anm)

Listing H.50: Create VLAN Network View

from autonetkit.ank import unwrap_nodes, unwrap_graph, wrap_edges,
wrap_nodes

import networkx as nx
import autonetkit.log as log
from itertools import count

def aggregate_nodes(nm_graph, nodes, retain=None):
"""Combines connected into a single node,
Note: retain is for the interfaces . . . """
pseudo_nodes = []
if retain is None:

retain = []
try:

retain.lower()
retain = [retain] # was a string, put into list

except AttributeError:
pass # already a list
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nodes = list(unwrap_nodes(nodes))
graph = unwrap_graph(nm_graph)
subgraph = graph.subgraph(nodes)
if not len(subgraph.edges()):

pass
total_added_edges = []
if graph.is_directed():

component_nodes_list = nx.strongly_connected_components(subgraph)
else:

component_nodes_list = nx.connected_components(subgraph)

pseudo_node_id = count()
for component_nodes in component_nodes_list:

if len(component_nodes) > 1:
component_nodes = [nm_graph.node(n)

for n in component_nodes]

nodes_to_remove = list(component_nodes)
pn_id = "pn" + str(pseudo_node_id.next())
base = nm_graph.add_node(pn_id)
base.set("device_type", "null ")
pseudo_nodes.append(base)

base_wrapped = nm_graph.node(base)

external_edges = []
for node in nodes_to_remove:

external_edges += [e for e in node.edges() if e.dst
not in component_nodes]

edges_to_add = []
for edge in external_edges:

dst = edge.dst
dst_int = edge.dst_int

prev_src_int = edge.src_int
base_src_int = base.add_interface()
for key in retain:

base_src_int.set(key, prev_src_int.get(key))

new_edge = nm_graph.add_edge(base_src_int, dst_int)
nm_graph.remove_nodes_from(nodes_to_remove)

neighs = base.neighbors()
x = sum(neigh["phy"].get("x") for neigh in neighs) / len(

neighs)
y = sum(neigh["phy"].get("y") for neigh in neighs) / len(

neighs)
base.set("x", x)
base.set("y", y)

return pseudo_nodes

Listing H.51: Aggregate Nodes High-Level Design Primitive

copy_int_attr_from(g_in, g_vlan, "vlan")

switches = g_vlan.switches()

pseudo_nodes = aggregate_nodes(g_vlan, switches, retain=["vlan"])
autonetkit.update_http(anm)

Listing H.52: Aggregate VLANs
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for p in pseudo_nodes:

# group interfaces
vlan_edges = defaultdict(list)
for edge in p.edges():

vlan = edge.src_int.get("vlan")
if vlan:

vlan_edges[vlan].append(edge)

# now create a new pseudo node for this vlan group
for vlan, edges in vlan_edges.items():

bc_id = "bc" + str(bc_node_id.next())
bc = g_vlan.add_node(bc_id, device_type="broadcast_domain")
bc.set("broadcast_domain", True)

g_phy.add_node(bc)

for edge in edges:
bc_iface = bc.add_interface()
dst_iface = edge.dst_int
g_vlan.add_edge(bc_iface, dst_iface)

neighs = bc.neighbors()
x = sum(neigh["phy"].get("x") for neigh in neighs) / len(neighs)
y = sum(neigh["phy"].get("y") for neigh in neighs) / len(neighs)
bc.set("x", x)
bc.set("y", y)

g_vlan.remove_node(p)

autonetkit.update_http(anm)

Listing H.53: Form VLAN Broadcast Domains

from autonetkit.ank import split
from autonetkit.ank import copy_int_attr_from, connected_subgraphs

g_switch = anm.add_overlay("switches")
g_switch.add_nodes_from(g_in.switches())
g_switch.add_edges_from(g_phy.edges())

copy_int_attr_from(g_in, g_switch, "vlan")

for edge in g_switch.edges():
edge.src_int.set("trunking", True)
edge.dst_int.set("trunking", True)

# and copy the VLANs for explicitly adding to each switch for VTP
connected = connected_subgraphs(g_switch)
for conn in connected:

vlans = set()
for node in conn:

vlans.update(i.get("vlan") for i in node.physical_interfaces()
if i.get("vlan"))

# now store on the nodes
for node in conn:

node.set("vlans", list(vlans))
autonetkit.update_http(anm)

Listing H.54: Create Switches Network View

from autonetkit.ank import split
from collections import Counter

455



H.4 code for vlan case study

g_l2 = anm.add_overlay(" layer2 ")
g_l2.add_nodes_from(g_vlan, retain="broadcast_domain")
g_l2.add_edges_from(g_vlan.edges())

# Split the point-to-point edges to add a collision domain
edges_to_split = [edge for edge in g_l2.edges()

if edge.src.is_l3device() and edge.dst.is_l3device()]

for edge in edges_to_split:
edge.split = True # mark as split for use in building nidb

split_created_nodes = split(g_l2, edges_to_split, id_prepend= ’bd_ ’)

for node in split_created_nodes:
# set midway x, y for plot
neighs = node.neighbors()
x = sum(neigh["phy"].get("x") for neigh in neighs) / len(neighs)
y = sum(neigh["phy"].get("y") for neigh in neighs) / len(neighs)
node.set("x", x)
node.set("y", y)

c = Counter(n.get("asn") for n in neighs)
most_common_asn, _ = c.most_common(1)[0]
node.set("asn", most_common_asn)

node.set("broadcast_domain", True)
node.set("device_type", "broadcast_domain")

autonetkit.update_http(anm)

Listing H.55: Create Layer 2 Network View

from autonetkit.ank import explode_nodes

g_l2_conn = anm.add_overlay("layer2_conn")
g_l2_conn.add_nodes_from(g_l2)
g_l2_conn.add_edges_from(g_l2.edges())
bc_nodes = g_l2.nodes(broadcast_domain=True)
explode_nodes(g_l2_conn, bc_nodes)

Listing H.56: Create Layer 2 Connectivity Network View

from autonetkit.ank import split, groupby, copy_attr_from
from netaddr import IPNetwork

g_ip = anm.add_overlay(" ip")
g_ip.add_nodes_from(g_l2, retain="device_type")
g_ip.add_edges_from(g_l2.edges())

bc_nodes = g_l2.nodes(broadcast_domain=True)

bc_attrs = ["broadcast_domain", "asn"]
for attr in bc_attrs:

copy_attr_from(g_l2, g_ip, attr, nbunch=bc_nodes)

# allocate loopback IPs
block = IPNetwork("172.16.0.0/16 ")
subnets = block.subnet(24)

loopback_allocations = {}

l3_nodes = g_ip.l3devices()
for asn, nodes in groupby("asn", l3_nodes):

asn_block = subnets.next()
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loopback_allocations[asn] = asn_block
hosts = asn_block.iter_hosts()

for node in nodes:
ip = hosts.next()
node.set("loopback", ip)

# allocate infra IPs
block = IPNetwork("192.168.0.0/16 ")
subnets = block.subnet(24)

infra_allocations = {}

bc_nodes = g_ip.nodes(broadcast_domain=True)
for asn, nodes in groupby("asn", bc_nodes):

asn_block = subnets.next()
infra_allocations[asn] = asn_block
ptp_subnets = asn_block.subnet(27)
for node in nodes:

prefix = ptp_subnets.next()
node.set("subnet", prefix)
hosts = prefix.iter_hosts()
for neigh_iface in node.neighbor_interfaces():

address = hosts.next()
neigh_iface.set(" ip", address)
neigh_iface.set("subnet", prefix)

autonetkit.update_http(anm)

Listing H.57: Create IP Network View

g_ospf = anm.add_overlay("ospf")
g_ospf.add_nodes_from(g_in.routers())
g_ospf.add_edges_from(e for e in g_l2_conn.edges()

if e.src.asn == e.dst.asn)
autonetkit.update_http(anm)

Listing H.58: Create OSPF Network View
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h.4.3 Compilation and Rendering

VIRL Platform Compiler

class simple_platform_compiler(object):

def __init__(self, anm, nidb):
self.anm = anm
self.nidb = nidb

def assign_router_interface_ids(self, node):
node.loopback_zero.set(" id", "Loopback0")
for index, interface in enumerate(node.physical_interfaces()):

id = "GigabitEthernet0/%s" % (index + 1)
interface.set(" id", id)
interface.set(" brief_id ", id.replace("GigabitEthernet", " "))

def assign_switch_interface_ids(self, node):
for index, interface in enumerate(node.physical_interfaces()):

offset_index = index + 1
quotient = offset_index / 4 # python integer division
remainder = offset_index % 4
id = "GigabitEthernet%s/%s" % (quotient, remainder)
interface.set(" id", id)
interface.set(" brief_id ", id.replace("GigabitEthernet", " "))

def setup_interfaces(self, node):
ifaces = []
copy_ip_info = node.is_l3device()

for interface in node.physical_interfaces():
if copy_ip_info:

ip_int = interface[" ip"]
ip = ip_int.get(" ip")
subnet = ip_int.get("subnet")

else:
ip = subnet = None

ifaces.append({
" id": interface.get(" id"),
" ip": ip,
"subnet": subnet

})

return ifaces

def compile(self):
g_in = self.anm["input"]
g_phy = self.anm["phy"]
g_ip = self.anm[" ip"]

rtr_comp = simple_router_compiler(self.anm, self.nidb)
switch_comp = simple_switch_compiler(self.anm, self.nidb)

virl_hosts = g_phy.nodes()

for host in g_phy.routers():
self.assign_router_interface_ids(host)
self.nidb[" interfaces "][host] = self.setup_interfaces(host)

for host in g_phy.switches():
self.assign_switch_interface_ids(host)
self.nidb[" interfaces "][host] = self.setup_interfaces(host)
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templates = {}

for node in g_phy.routers():
rtr_data = rtr_comp.compile(node)
self.nidb["hosts"][node.label] = rtr_data
templates[node.label] = router_template

for node in g_phy.switches():
switch_data = switch_comp.compile(node)
self.nidb["hosts"][node.label] = switch_data
templates[node.label] = switch_template

lab = {"machines": virl_hosts, "subnets": subnets}

self.nidb[" labs "] = lab
self.nidb["templates"] = templates

sim_plat = simple_platform_compiler(anm, nidb)
sim_plat.compile()

Listing H.59: VIRL Platform Compiler

IOSv Router Compiler

class simple_router_compiler(object):

def __init__(self, anm, nidb):
self.anm = anm
self.nidb = nidb

def compile(self, node):
interfaces = self.interfaces(node)
ospf = self.ospf(node)

hostname = str(node)
if hostname.isdigit():

hostname = "sw" + hostname

return {
" interfaces ": interfaces,
"ospf": ospf,
"hostname": hostname,
"asn": node.get("asn")

}

def interfaces(self, node):
ifaces = []
phy_node = self.anm["phy"].node(node)
for interface in phy_node.physical_interfaces():

int_id = interface.get(" id")
ip_int = interface[" ip"]
ip = ip_int.get(" ip")
subnet = ip_int.get("subnet")

ospf_int = interface["ospf"]
ospf_cost = ospf_int.get(" cost ")

ifaces.append({" ip": ip,
" id": int_id,
"physical ": True,
"ospf_cost": ospf_cost,
"broadcast": subnet.broadcast,
"netmask": subnet.netmask})
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interface = node.loopback_zero
ip_int = interface[" ip"]
int_id = interface.get(" id")
ip = ip_int.get(" ip")
subnet = ip_int.get("subnet")
ifaces.append({" ip": ip,

" id": int_id,
"physical ": False,
"broadcast": subnet.broadcast,
"netmask": subnet.netmask})

return ifaces

def ospf(self, node):
# process interfaces
networks = []
ospf_node = node["ospf"]
process_id = ospf_node.get("process_id")
for interface in ospf_node.physical_interfaces():

area = interface.get("area")
subnet = interface[" ip"].get("subnet")
networks.append({

"area": area,
" prefix ": subnet.network,
"hostmask": subnet.hostmask

})

lo0 = ospf_node.loopback_zero
subnet = lo0[" ip"].get("subnet")
networks.append({

"area": lo0.get("area"),
" prefix ": subnet.network,
"hostmask": subnet.hostmask

})

return {"networks": networks,
"process_id": process_id}

Listing H.60: VIRL IOSv Router Compiler

IOSvL2 Switch Compiler

class simple_switch_compiler(object):

def __init__(self, anm, nidb):
self.anm = anm
self.nidb = nidb

def compile(self, node):
interfaces = self.interfaces(node)
vlans = self.vlans(node)

return {
" interfaces ": interfaces,
"vlans": vlans,
"hostname": str(node),
"asn": node.get("asn")

}

def interfaces(self, node):
ifaces = []
phy_node = self.anm["phy"].node(node)
data_interfaces = phy_node.physical_interfaces()
for interface in data_interfaces:
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int_id = interface.get(" id")
switches_iface = self.anm["switches"].interface(interface)

if switches_iface.get("trunking"):
trunking = True

else:
trunking = False

vlan = switches_iface.get("vlan")

ifaces.append({
" id": int_id,
"trunking": trunking,
"vlan": vlan

})

return ifaces

def vlans(self, node):
switch_node = self.anm["switches"].node(node)
retval = switch_node.get("vlans")
return retval

Listing H.61: VIRL IOSvL2 Switch Compiler

Templates

!
hostname {{node.hostname}}
boot-start-marker
boot-end-marker
!
no aaa new-model
!
ip cef
!
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
no service config
enable password cisco
ip classless
ip subnet-zero
no ip domain lookup
line vty 0 4
transport input ssh telnet
exec-timeout 720 0
password cisco
login
line con 0
password cisco
!
interface GigabitEthernet0/0
description OOB Management
! Configured on launch
no ip address
duplex auto
speed auto
no shutdown

!
{% for interface in node.interfaces %}
interface {{interface.id}}
ip address {{interface.ip}} {{interface.netmask}}
{% if interface.physical %}
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duplex auto
speed auto
no shutdown
{% endif %}

!
{% endfor %}
!
router ospf {{node.ospf.process_id}}
log-adjacency-changes
passive-interface Loopback0

{% for network in node.ospf.networks %}
network {{network.prefix}} {{network.hostmask}} area {{network.area}}

{% endfor %}
!
end

Listing H.62: VIRL IOSv Router Template

!
version 15.2
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
service compress-config
no service config
enable password cisco
ip classless
ip subnet-zero
no ip domain lookup
!
line vty 0 4
transport input ssh telnet
exec-timeout 720 0
password cisco
login
!
line con 0
password cisco
!
hostname {{node.hostname}}
!
boot-start-marker
boot-end-marker
!
no aaa new-model
!
ip cef
no ipv6 cef
!
spanning-tree mode pvst
spanning-tree extend system-id
!
vlan internal allocation policy ascending
!
vtp domain test.lab
vtp mode transparent
{% for vlan in node.vlans %}
vlan {{vlan}}
{% endfor %}
!
interface Loopback0
description Loopback

!
interface GigabitEthernet0/0
description Mapped to Vlan1 for management

462



H.4 code for vlan case study

! Configured on launch
switchport mode access
no shutdown

!
{% for interface in node.interfaces %}
interface {{interface.id}}
{% if interface.trunking %}
switchport trunk encapsulation dot1q
switchport mode trunk
{% elif interface.vlan %}
switchport mode access
switchport access vlan {{interface.vlan}}
{% endif %}
no shutdown

!
{% endfor %}
interface Vlan1
description OOB Management
! Configured on launch
no ip address

!
ip forward-protocol nd
!
no ip http server
no ip http secure-server
!
control-plane
!
end

Listing H.63: VIRL IOSvL2 Switch Template

Packaging

from collections import defaultdict

import xml.etree.ElementTree as ET
topology = ET.Element( ’topology ’)
topology.set("xmlns", "http://www. cisco .com/VIRL")
topology.set("xmlns: xsi ", "http://www.w3. org/2001/XMLSchema−instance")
topology.set("schemaVersion", " 0.9 ")
topology.set(" xsi : schemaLocation",

"http://www. cisco .com/VIRL https://raw. github .com/CiscoVIRL/
schema/v0.9/ virl . xsd")

node_indices = {}
iface_indices = defaultdict(dict)

node_index = 0
for node in sorted(g_phy):

if node.is_switch():
subtype = "IOSvL2"

elif node.is_router():
subtype = "IOSv"

else:
continue

nodeElem = ET.SubElement(topology, "node")
nodeName = node.get(" label ")
nodeElem.set("type", "SIMPLE")
nodeElem.set("subtype", subtype)

nodeExtensions = ET.SubElement(nodeElem, "extensions")
configEntry = ET.SubElement(nodeExtensions, "entry")
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configEntry.set("key", "config")
configEntry.set("type", " string ")
configEntry.text = configs[nodeName]
nodeElem.set("name", node.get(" label "))

location = "%s,%s" % (node.get("x"), node.get("y"))
nodeElem.set(" location ", location)
node_indices[nodeName] = node_index
node_index = node_index + 1

for iface_index, iface in enumerate(node.physical_interfaces()):
ifaceElem = ET.SubElement(nodeElem, " interface ")
ifaceName = str(iface.get(" id"))
ifaceElem.set("name", ifaceName)
ifaceElem.set(" id", str(iface_index))

iface_indices[nodeName][ifaceName] = iface_index

for edge in g_phy.edges():
src_node = edge.src
dst_node = edge.dst
src_iface = edge.src_int
dst_iface = edge.dst_int

src_node_index = node_indices[src_node.get(" label ")] + 1
src_iface_index = iface_indices[src_node.get(" label ")][

src_iface.get(" id")] + 1
src_string = "/virl : topology/virl :node[%s]/ virl : interface[%s ] " % (

src_node_index, src_iface_index)

dst_node_index = node_indices[dst_node.get(" label ")] + 1
dst_iface_index = iface_indices[dst_node.get(" label ")][

dst_iface.get(" id")] + 1
dst_string = "/virl : topology/virl :node[%s]/ virl : interface[%s ] " % (

dst_node_index, dst_iface_index)

connection = ET.SubElement(topology, "connection")
connection.set(" src ", src_string)
connection.set("dst", dst_string)

# http://stackoverflow.com/questions/15356641
from io import BytesIO
xml_string = ET.tostring(topology, encoding="UTF−8")
import xml.dom.minidom
xml = xml.dom.minidom.parseString(xml_string)
pretty_xml_as_string = xml.toprettyxml(encoding="UTF−8")
with open("output . virl ", "w") as fh:

fh.write(pretty_xml_as_string)

Listing H.64: VIRL XML Packaging
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h.4.4 Simulation Results

sw8#sh vlan

VLAN Name Status Ports
---- -------------------------------- ---------

-------------------------------
1 default active Gi0/0
2 VLAN0002 active Gi0/1, Gi1/0
3 VLAN0003 active Gi0/3
4 VLAN0004 active Gi0/2
1002 fddi-default act/unsup
1003 token-ring-default act/unsup
1004 fddinet-default act/unsup
1005 trnet-default act/unsup

Listing H.65: Output of show vlan for sw8

r2#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS

level-2
ia - IS-IS inter area, * - candidate default, U - per-user static

route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from

PfR

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C 10.255.0.0/16 is directly connected, GigabitEthernet0/0
L 10.255.1.173/32 is directly connected, GigabitEthernet0/0

172.16.0.0/32 is subnetted, 2 subnets
C 172.16.0.2 is directly connected, Loopback0
O 172.16.0.8 [110/2] via 192.168.0.66, 00:09:51, GigabitEthernet0

/1
192.168.0.0/24 is variably subnetted, 2 subnets, 2 masks

C 192.168.0.64/27 is directly connected, GigabitEthernet0/1
L 192.168.0.65/32 is directly connected, GigabitEthernet0/1

Listing H.66: Output of sh ip route for r2

r9#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS

level-2
ia - IS-IS inter area, * - candidate default, U - per-user static

route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from

PfR

Gateway of last resort is not set

465



H.4 code for vlan case study

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C 10.255.0.0/16 is directly connected, GigabitEthernet0/0
L 10.255.1.179/32 is directly connected, GigabitEthernet0/0

172.16.0.0/32 is subnetted, 7 subnets
O 172.16.0.1 [110/2] via 192.168.0.33, 00:09:05, GigabitEthernet0

/2
O 172.16.0.3 [110/2] via 192.168.0.34, 00:09:05, GigabitEthernet0

/2
O 172.16.0.4 [110/2] via 192.168.0.129, 00:08:48, GigabitEthernet0

/1
O 172.16.0.5 [110/3] via 192.168.0.129, 00:08:48, GigabitEthernet0

/1
C 172.16.0.6 is directly connected, Loopback0
O 172.16.0.7 [110/3] via 192.168.0.36, 00:09:05, GigabitEthernet0

/2
O 172.16.0.9 [110/2] via 192.168.0.36, 00:09:05, GigabitEthernet0

/2
192.168.0.0/24 is variably subnetted, 6 subnets, 2 masks

O 192.168.0.0/27
[110/2] via 192.168.0.129, 00:08:48, GigabitEthernet0/1

C 192.168.0.32/27 is directly connected, GigabitEthernet0/2
L 192.168.0.35/32 is directly connected, GigabitEthernet0/2
O 192.168.0.96/27

[110/2] via 192.168.0.36, 00:09:05, GigabitEthernet0/2
C 192.168.0.128/27 is directly connected, GigabitEthernet0/1
L 192.168.0.130/32 is directly connected, GigabitEthernet0/1

Listing H.67: Output of sh ip route for r9

r9#sh ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS

level-2
ia - IS-IS inter area, * - candidate default, U - per-user static

route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from

PfR

Gateway of last resort is not set

/8 is variably subnetted, 2 subnets, 2 masks
C /16 is directly connected, GigE0/0
L /32 is directly connected, GigE0/0

/32 is subnetted, 7 subnets
O Lo0.r1 [110/2] via GigE0/1.r1, 00:09:05, GigE0/2
O Lo0.r3 [110/2] via GigE0/1.r3, 00:09:05, GigE0/2
O Lo0.r6 [110/2] via GigE0/1.r6, 00:08:48, GigE0/1
O Lo0.r7 [110/3] via GigE0/1.r6, 00:08:48, GigE0/1
C Lo0.r9 is directly connected, Lo0
O Lo0.r11 [110/3] via GigE0/1.r13, 00:09:05, GigE0/2
O Lo0.r13 [110/2] via GigE0/1.r13, 00:09:05, GigE0/2

/24 is variably subnetted, 6 subnets, 2 masks
O /27

[110/2] via GigE0/1.r6, 00:08:48, GigE0/1
C /27 is directly connected, GigE0/2
L GigE0/2.r9/32 is directly connected, GigE0/2
O /27

[110/2] via GigE0/1.r13, 00:09:05, GigE0/2
C /27 is directly connected, GigE0/1
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L GigE0/1.r9/32 is directly connected, GigE0/1

Listing H.68: Output of sh ip route for r9, after post-processing
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h.5 code for large-scale case study

h.5.1 Network Whiteboard

import autonetkit.load.graphml as graphml
with open(" interconnect .graphml") as fh:

data = fh.read()

input_graph = graphml.load_graphml(data)
nodes = {}
for n, data in input_graph.nodes(data=True):

nodes[n] = {
" id": n,
"asn": data["asn"],
"x": float(data.get("Longitude", 0)),
"y": -1 * float(data.get("Latitude", 0)),
"Network": data["Network"]

}

edges = input_graph.edges()

Listing H.69: Load Source Graphml

import autonetkit
anm = autonetkit.NetworkModel()
g_in = anm.add_overlay("input")

index = 0
for n, d in nodes.items():

g_in.add_node(n, x=d["x"], device_type=" router",
network=d["Network"],
y=d["y"], asn=d["asn"])

Listing H.70: Add Nodes to Network Whiteboard

for src, dst in edges:
src = src.replace(" ", "_")
dst = dst.replace(" ", "_")
if src in g_in and dst in g_in:

g_in.add_edge(src, dst)

Listing H.71: Add Edges to Network Whiteboard

for n in sorted(g_in):
if int(n.get("x")) == 0 or int(n.get("y")) == 0:

neighs = n.neighbors()
x = sum(neigh["input"].get("x") for neigh in neighs) / len(neighs

)
y = sum(neigh["input"].get("y") for neigh in neighs) / len(neighs

)
n.set("x", x)
n.set("y", y)

# normalise x, y
overall_scale = 80
for n in g_in:

n.set("x", overall_scale * n.get("x"))
n.set("y", overall_scale * n.get("y"))
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node_x = [n.get( ’x ’) for n in g_in]
node_y = [n.get( ’y ’) for n in g_in]
min_x = min(node_x)
max_x = max(node_x)
min_y = min(node_y)
max_y = max(node_y)

x_scale = 1 * (max_x - min_x)
y_scale = 1 * (max_y - min_y)
overall_scale = max(x_scale, y_scale)
for n in g_in:

n.set("x", n.get("x") - min_x)
n.set("y", n.get("y") - min_y)

Listing H.72: Normalise Locations
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h.5.2 Design Functions

g_phy = anm[ ’phy’]
g_phy.add_nodes_from(g_in, retain=["asn", "device_type", "x", "y"])
g_phy.update(platform=" netkit ", syntax="quagga")

g_phy.add_edges_from(g_in.edges())

Listing H.73: Create Physical Network View

from autonetkit.ank import split
from collections import Counter

g_l2 = anm.add_overlay(" layer2 ")
g_l2.add_nodes_from(g_phy)
g_l2.add_edges_from(g_phy.edges())

# Split the point-to-point edges to add a collision domain
edges_to_split = [edge for edge in g_l2.edges()

if edge.src.is_l3device() and edge.dst.is_l3device()]

for edge in edges_to_split:
edge.split = True # mark as split for use in building nidb

split_created_nodes = split(g_l2, edges_to_split, id_prepend= ’bd_ ’)

for node in split_created_nodes:
# set midway x, y for plot
neighs = node.neighbors()
x = sum(neigh["phy"].get("x") for neigh in neighs) / len(neighs)
y = sum(neigh["phy"].get("y") for neigh in neighs) / len(neighs)
node.set("x", x)
node.set("y", y)

c = Counter(n.get("asn") for n in neighs)
most_common_asn, _ = c.most_common(1)[0]
node.set("asn", most_common_asn)

node.set("broadcast_domain", True)
node.set("device_type", "broadcast_domain")

Listing H.74: Create Layer 2 Network View

from autonetkit.ank import explode_nodes

g_l2_conn = anm.add_overlay("layer2_conn")
g_l2_conn.add_nodes_from(g_l2)
g_l2_conn.add_edges_from(g_l2.edges())
bc_nodes = g_l2.nodes(broadcast_domain=True)
explode_nodes(g_l2_conn, bc_nodes)

Listing H.75: Create Layer 2 Connectivity Network View

from autonetkit.ank import split, groupby, copy_attr_from
from netaddr import IPNetwork

g_ip = anm.add_overlay(" ip")
g_ip.add_nodes_from(g_l2)
g_ip.add_edges_from(g_l2.edges())

bc_nodes = g_l2.nodes(broadcast_domain=True)
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bc_attrs = ["broadcast_domain", "device_type", "asn"]
for attr in bc_attrs:

copy_attr_from(g_l2, g_ip, attr, nbunch=bc_nodes)

# allocate loopback IPs
block = IPNetwork("172.16.0.0/16 ")
subnets = block.subnet(24)

loopback_allocations = {}

l3_nodes = g_ip.l3devices()
for asn, nodes in groupby("asn", l3_nodes):

asn_block = subnets.next()
loopback_allocations[asn] = asn_block
hosts = asn_block.iter_hosts()

for node in nodes:
ip = hosts.next()
node.set("loopback", ip)

# allocate infra IPs
block = IPNetwork(" 10.0.0.0/8 ")
subnets = block.subnet(16)

infra_allocations = {}

bc_nodes = g_ip.nodes(broadcast_domain=True)
for asn, nodes in groupby("asn", bc_nodes):

asn_block = subnets.next()
infra_allocations[asn] = asn_block
ptp_subnets = asn_block.subnet(30)
for node in nodes:

prefix = ptp_subnets.next()
node.set("subnet", prefix)

hosts = prefix.iter_hosts()
for neigh_iface in node.neighbor_interfaces():

address = hosts.next()
neigh_iface.set(" ip", address)
neigh_iface.set("subnet", prefix)

Listing H.76: Allocate IP Addresses

g_ospf = anm.add_overlay("ospf")
g_ospf.add_nodes_from(g_in.routers())
g_ospf.add_edges_from(e for e in g_l2_conn.edges()

if e.src.asn == e.dst.asn)

Listing H.77: Create OSPF Network View

g_ibgp = anm.add_overlay("ibgp")
g_ibgp.add_nodes_from(g_in.routers())

Listing H.78: Create iBGP Network View

from autonetkit.ank import groupby, unwrap_graph
import networkx as nx

graph = unwrap_graph(g_ibgp)

for asn, nodes in groupby("asn", g_ibgp):
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nodes = list(nodes)
subgraph = graph.subgraph(n.id for n in nodes)
central = nx.betweenness_centrality(subgraph)
sorted_central = sorted(central, key=lambda k: central[k])
rr_size = min(int(len(nodes) / 3), 3)
most_central = sorted_central[:rr_size]

rrs = {g_ibgp.node(r) for r in most_central}
for rr in rrs:

rr.set(" ibgp_role", "RR")

clients = set(nodes) - rrs
for client in clients:

client.set(" ibgp_role", "Client ")

Listing H.79: Allocate iBGP Roles

from autonetkit.ank import groupby, unwrap_graph
import networkx as nx

for asn, nodes in groupby("asn", g_ibgp):
nodes = list(nodes)

# Form set of route reflectors
rrs = set(n for n in nodes if n.get(" ibgp_role") == "RR")
# Form set of route reflector clients
clients = set(n for n in nodes if n.get(" ibgp_role") == "Client ")
# Form tuples of (route reflector, client)
rr_to_c = [(r, c) for r in rrs for c in clients]
edges = []

for src, dst in rr_to_c:
# Create iBGP session termination points
src_endpoint = src.add_interface(category="bgp_session")
dst_endpoint = dst.add_interface(category="bgp_session")
# Specify direction for route-reflection peering
src_endpoint.set(" direction ", "down")
dst_endpoint.set(" direction ", "up")
# Create session between termination points
edges.append((src_endpoint, dst_endpoint))

# Form tuples of (route reflector, route reflector)
rr_to_rr = [(r1, r2) for r1 in rrs for r2 in rrs if r1 != r2]
for src, dst in rr_to_rr:

# Create iBGP session termination points
src_endpoint = src.add_interface(category="bgp_session")
dst_endpoint = dst.add_interface(category="bgp_session")
# Specify direction for route-reflection peering
src_endpoint.set(" direction ", "over")
dst_endpoint.set(" direction ", "over")
# Create session between termination points
edges.append((src_endpoint, dst_endpoint))

# Add all sessions
g_ibgp.add_edges_from(edges)

Listing H.80: Create iBGP Connectivity

rrs = g_ibgp.nodes(ibgp_role="RR")
from autonetkit.ank_messaging import highlight
highlight(nodes=rrs)

Listing H.81: Highlight Route Reflectors in Visualisation
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g_ebgp = anm.add_overlay("ebgp")
g_ebgp.add_nodes_from(g_in.routers())
edges = [e for e in g_l2_conn.edges()

if e.src.asn != e.dst.asn]

for e in edges:
# Obtain source and destination nodes
src = g_ebgp.node(e.src)
dst = g_ebgp.node(e.dst)
# Create BGP session termination points
src_endpoint = src.add_interface(category="bgp_session")
dst_endpoint = dst.add_interface(category="bgp_session")
# add session to g_ebgp
g_ebgp.add_edge(src_endpoint, dst_endpoint)

ebgp_nodes = [n for n in g_ebgp if n.degree() > 0]
highlight(nodes=ebgp_nodes)

Listing H.82: Create eBGP Network View

from netaddr import IPSet

for node in g_ebgp:
adv_prefixes = IPSet()
if node.degree() == 0:

continue

asn = node.get("asn")
# Get infrastructure address blocks for this AS
ip_infra = infra_allocations.get(asn, [])
# Store on the node
node.set("networks", [str(ip_infra)])

Listing H.83: BGP Network Advertisements

from autonetkit.ank import unwrap_graph
import networkx as nx
from random import choice
from collections import Counter

graph = unwrap_graph(g_phy)
nodes = graph.nodes()

def ntwrk(p):
return g_in.node(p).get("network")

def unique_networks(networks):
networks = list(networks)
c = Counter(networks)
retval = []
previous = None
for n in networks:

if n != previous:
retval.append(n)

previous = n

return ["%s (%s ) " % (n, c[n]) for n in retval]

paths = []

path_nodes = set()
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for _ in range(3):
src = choice(nodes)
dst = choice(nodes)
path = nx.shortest_path(graph, src, dst)
print "%s to %s" % (src, dst)
print " −> ".join(path)
print " −> ".join(unique_networks(ntwrk(p) for p in path))
print
paths.append(path)
path_nodes.add(src)
path_nodes.add(dst)
path_nodes.update(list(g_phy.node(p) for p in path))

print "p nodes", path_nodes

g_analysis = anm.add_overlay(" analysis ")
g_analysis.add_nodes_from(g_phy)
g_analysis.add_edges_from(g_phy.edges())
for n in g_analysis:

if n in path_nodes:
n.set("path_label", n.id)

from autonetkit.ank_messaging import highlight
highlight(paths=paths)

Listing H.84: Example of Paths

Telsiai to Castilla_Y_Leon
Telsiai -> Klaipeda -> Kaunas -> LT -> PL -> DE -> FR -> ES -> Nacional

-> Castilla_Y_Leon
LITNET -> GEANT -> RedIris

Vaxjo to Breda
Vaxjo -> Jonkoping -> Linkoping -> Stockholm_2603 -> Copenhagen -> DK ->

NL -> Amsterdam -> Delft -> Rotterdam -> Dordrecht -> Breda
SUNET -> NORDUnet -> GEANT -> SURFnet

Fe to Celje
Fe -> BO -> MI-1 -> IT -> AT -> Ljubljana -> Kamnik -> Celje
GARR -> GEANT -> ARNES

Listing H.85: Example analysis of paths in NREN1400 topology
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h.5.3 Netkit

Netkit Platform Compiler

# Create Platform Compiler and Compile
sim_plat = simple_platform_compiler(nidb, anm, " localhost ")
sim_plat.compile()

Listing H.86: Quagga Device Compiler

Quagga Device Compiler

from autonetkit.compilers.device import router_base

class simple_router_compiler(router_base.RouterCompiler):

def compile(self, node):
interfaces = self.interfaces(node)
ospf = self.ospf(node)
bgp = self.bgp(node)

return {
" interfaces ": interfaces,
"ospf": ospf,
"bgp": bgp,

}

def interfaces(self, node):
ifaces = []
ip_node = self.anm[ ’ ip ’].node(node)
for interface in node.physical_interfaces():

ip_int = ip_node.interface(interface)
ip = ip_int.get(" ip")
netmask = ip_int.get("subnet").netmask
ifaces.append({" ip": ip, "netmask": netmask})

return ifaces

def ospf(self, node):
ospf_node = self.anm["ospf"].node(node)
networks = ospf_node.get("networks") or []
redistribute_connected = ospf_node.get(" redistribute_connected")

or []
redistribute_bgp = ospf_node.get(" redistribute_bgp") or []

return {
"networks": networks,
" redistribute_connected": redistribute_connected,
" redistribute_bgp": redistribute_bgp,

}

def bgp(self, node):
ibgp_neighbors = []
g_ibgp = self.anm["ibgp"]

for session in g_ibgp.edges(node):
dst = session.dst
dst_int = session.dst_int
dst_bound_int = dst_int.get("bound_to")
neigh_ip = dst_bound_int[" ip"].get(" ip")
desc = "Router %s" % dst
data = {
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"neigh_ip": neigh_ip,
"asn": dst.get("asn"),
"desc": desc

}
ibgp_neighbors.append(data)

ebgp_neighbors = []
g_ebgp = self.anm["ebgp"]
ebgp_node = g_ebgp.node(node)
for session in g_ebgp.edges(node):

dst = session.dst
dst_int = session.dst_int
dst_bound_int = dst_int.get("bound_to")
neigh_ip = dst_bound_int[" ip"].get(" ip")
desc = "Router %s" % dst
data = {

"neigh_ip": neigh_ip,
"asn": dst.get("asn"),
"desc": desc

}
ebgp_neighbors.append(data)

networks = ebgp_node.get("networks") or []
prefix_lists = ebgp_node.get(" prefix_lists ") or []
route_maps = ebgp_node.get("route_maps") or []
return {

"ibgp_neighbors": ibgp_neighbors,
"ebgp_neighbors": ebgp_neighbors,
"networks": networks,
" prefix_lists ": prefix_lists,
"route_maps": route_maps

}

Listing H.87: Quagga Device Compiler
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h.5.4 C-BGP

C-BGP Platform Compiler

class cbgp_compiler(object):

def __init__(self, anm, nidb):
self.anm = anm
self.nidb = nidb

def physical(self):
# Physical connectivity
data = {}
g_phy = self.anm["phy"]
for asn, nodes in groupby("asn", g_phy):

# Do on a per-AS basis for visual clarity
data[asn] = {"nodes": [], " links ": []}
nodes = list(nodes)
for node in nodes:

lo_ip = str(node[" ip"].loopback_zero.get(" ip"))
data[asn]["nodes"].append(lo_ip)

# use subgraph to form asn-only subgraph
# note this also could be formed from iBGP graph
asn_subgraph = g_phy.subgraph(nodes)
for edge in asn_subgraph.edges():

src = edge.src
dst = edge.dst
src_ip = src[" ip"].loopback_zero.get(" ip")
dst_ip = dst[" ip"].loopback_zero.get(" ip")
link = (src_ip, dst_ip)
data[asn][" links "].append(link)

return data

def inter_domain(self):
# Compiler inter-domain links
data = []
for edge in self.anm["ebgp"].edges():

src = edge.src
dst = edge.dst
src_ip = src[" ip"].loopback_zero.get(" ip")
dst_ip = dst[" ip"].loopback_zero.get(" ip")
link = (src_ip, dst_ip)
data.append(link)

return data

def igp(self):
# Setup IGP links within an AN
data = {}
g_ospf = self.anm["ospf"]
for asn, nodes in groupby("asn", g_ospf):

# Do on a per-AS basis for visual clarity
data[asn] = {"nodes": [], " links ": []}
nodes = list(nodes)
for node in nodes:

lo_ip = str(node[" ip"].loopback_zero.get(" ip"))
data[asn]["nodes"].append(lo_ip)

# use subgraph to form asn-only subgraph
# note this also could be formed from iBGP graph
asn_subgraph = g_phy.subgraph(nodes)
for edge in asn_subgraph.edges():

src = edge.src
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dst = edge.dst
src_ip = src[" ip"].loopback_zero.get(" ip")
dst_ip = dst[" ip"].loopback_zero.get(" ip")
link = (src_ip, dst_ip)
data[asn][" links "].append(link)

return data

def bgp(self):
# Setup BGP routers and sessions
g_phy = self.anm["phy"]
g_ibgp = self.anm["ibgp"]
g_ebgp = self.anm["ebgp"]

routers = {}
peers = {}

for asn, nodes in groupby("asn", g_phy):
nodes = list(nodes)
routers[asn] = []
peers[asn] = {}
prefixes = {}
for node in nodes:

if node in g_ebgp:
lo_ip = str(node[" ip"].loopback_zero.get(" ip"))
routers[asn].append(lo_ip)

if node["ebgp"].degree():
peers[asn][lo_ip] = {"ebgp": []}

for session in node["ebgp"].edges():
# Sessions from this eBGP router
src_endpoint = session.src_int
direction = src_endpoint.get(" direction ")

peer_ip = session.dst[" ip"].loopback_zero.get(" ip")
peer = {

"domain": session.dst.get("asn"),
"next_hop_self": True,
"up": True,
" ip": peer_ip

}

peers[asn][lo_ip]["ebgp"].append(peer)

for node in g_ebgp:
# Networks to advertise for this eBGP router
lo_ip = str(node[" ip"].loopback_zero.get(" ip"))
networks = node.get("networks")
if networks:

prefixes[lo_ip] = networks

data = {
" routers ": routers,
"peers": peers,
" prefixes ": prefixes

}

return data

def compile(self):
# Compile each component
self.nidb["physical "] = self.physical()
self.nidb["inter_domain"] = self.inter_domain()
self.nidb["igp"] = self.igp()
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self.nidb["bgp"] = self.bgp()

Listing H.88: C-BGP Platform Compiler

C-BGP Template

{% for asn, asn_data in idm.physical.iteritems() %}
# "physical" topology for {{asn}}

{% for node in asn_data.nodes %}
net add node {{node}}

{% endfor %}
{% for src, dst in asn_data.links %}

net add link {{src}} {{dst}}
{% endfor %}

{% endfor %}

# Interdomain links
{% for src, dst in idm.inter_domain %}
net add link {{src}} {{dst}}
{% endfor %}

# Static routes for interdomain links
{% for src, dst in idm.inter_domain %}
net node {{src}} route add --oif={{dst}} {{dst}}/32 1
net node {{dst}} route add --oif={{src}} {{src}}/32 1
{% endfor %}

{% for asn, asn_data in idm.physical.iteritems() %}
# IGP topology for {{asn}}
net add domain {{asn}} igp

{% for node in asn_data.nodes %}
net node {{node}} domain {{asn}}

{% endfor %}
{% for src, dst in asn_data.links %}

net link {{src}} {{dst}} igp-weight --bidir 1
{% endfor %}

net domain {{asn}} compute

{% endfor %}

{% for asn, asn_data in idm.bgp.routers.iteritems() %}
# BGP routers in {{asn}}

{% for node in asn_data %}
bgp add router {{asn}} {{node}}

{% endfor %}
bgp domain {{asn}} full-mesh

{% endfor %}

{% for asn, asn_data in idm.bgp.peers.iteritems() %}
# BGP routers for {{asn}}

{% for node, node_data in asn_data.iteritems() %}
bgp router {{node}}

{% for peer in node_data.ebgp %}
add peer {{peer.domain}} {{peer.ip}}
{% if peer.next_hop_self %}
peer {{peer.ip}} next-hop-self
{% endif %}
{% if peer.up %}
peer {{peer.ip}} up
{% endif %}
{% endfor %}
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exit

{% endfor %}

{% endfor %}

# Originate prefixes
{% for node, prefixes in idm.bgp.prefixes.iteritems() %}

{% for prefix in prefixes %}
bgp router {{node}} add network {{prefix}}

{% endfor %}
{% endfor %}

sim run

Listing H.89: C-BGP Template

Simulation Results

# "physical" topology for 3221
net add node 192.168.25.8
net add node 192.168.25.1
net add node 192.168.25.2
net add node 192.168.25.3
net add node 192.168.25.7
net add node 192.168.25.10
net add node 192.168.25.12
net add node 192.168.25.5
net add node 192.168.25.11
net add node 192.168.25.4
net add node 192.168.25.9
net add node 192.168.25.6
net add link 192.168.25.8 192.168.25.3
net add link 192.168.25.8 192.168.25.9
net add link 192.168.25.2 192.168.25.12
net add link 192.168.25.6 192.168.25.12
net add link 192.168.25.3 192.168.25.5
net add link 192.168.25.4 192.168.25.12
net add link 192.168.25.4 192.168.25.5
net add link 192.168.25.10 192.168.25.12
net add link 192.168.25.12 192.168.25.1
net add link 192.168.25.12 192.168.25.11
net add link 192.168.25.12 192.168.25.5
net add link 192.168.25.7 192.168.25.5

# Interdomain links
net add link 192.168.9.19 192.168.18.6
net add link 192.168.16.34 192.168.38.15
net add link 192.168.13.42 192.168.38.17
net add link 192.168.13.42 192.168.38.7
net add link 192.168.38.1 192.168.28.5
net add link 192.168.33.2 192.168.21.28
net add link 192.168.19.24 192.168.38.14
net add link 192.168.22.30 192.168.38.2
net add link 192.168.1.15 192.168.18.21
net add link 192.168.36.1 192.168.12.7
net add link 192.168.38.5 192.168.23.2
net add link 192.168.31.6 192.168.18.4

# Static routes for interdomain links
net node 192.168.9.19 route add --oif=192.168.18.6 192.168.18.6/32 1
net node 192.168.18.6 route add --oif=192.168.9.19 192.168.9.19/32 1
net node 192.168.16.34 route add --oif=192.168.38.15 192.168.38.15/32 1
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net node 192.168.38.15 route add --oif=192.168.16.34 192.168.16.34/32 1
net node 192.168.13.42 route add --oif=192.168.38.17 192.168.38.17/32 1
net node 192.168.38.17 route add --oif=192.168.13.42 192.168.13.42/32 1
net node 192.168.13.42 route add --oif=192.168.38.7 192.168.38.7/32 1
net node 192.168.38.7 route add --oif=192.168.13.42 192.168.13.42/32 1
net node 192.168.38.1 route add --oif=192.168.28.5 192.168.28.5/32 1
net node 192.168.28.5 route add --oif=192.168.38.1 192.168.38.1/32 1
net node 192.168.33.2 route add --oif=192.168.21.28 192.168.21.28/32 1
net node 192.168.21.28 route add --oif=192.168.33.2 192.168.33.2/32 1
net node 192.168.19.24 route add --oif=192.168.38.14 192.168.38.14/32 1

# IGP topology for 21274
net add domain 21274 igp
net node 192.168.39.1 domain 21274
net node 192.168.39.4 domain 21274
net node 192.168.39.2 domain 21274
net node 192.168.39.6 domain 21274
net node 192.168.39.3 domain 21274
net node 192.168.39.5 domain 21274
net link 192.168.39.1 192.168.39.6 igp-weight --bidir 1
net link 192.168.39.4 192.168.39.6 igp-weight --bidir 1
net link 192.168.39.2 192.168.39.6 igp-weight --bidir 1
net link 192.168.39.5 192.168.39.6 igp-weight --bidir 1
net link 192.168.39.6 192.168.39.3 igp-weight --bidir 1
net domain 21274 compute

# BGP routers in 12687
bgp add router 12687 192.168.35.1
bgp add router 12687 192.168.35.8
bgp add router 12687 192.168.35.2
bgp add router 12687 192.168.35.7
bgp add router 12687 192.168.35.15
bgp add router 12687 192.168.35.17
bgp add router 12687 192.168.35.18
bgp add router 12687 192.168.35.9
bgp add router 12687 192.168.35.14
bgp add router 12687 192.168.35.3
bgp add router 12687 192.168.35.10
bgp add router 12687 192.168.35.4
bgp add router 12687 192.168.35.11
bgp add router 12687 192.168.35.5
bgp add router 12687 192.168.35.6
bgp add router 12687 192.168.35.13
bgp add router 12687 192.168.35.19
bgp add router 12687 192.168.35.12
bgp add router 12687 192.168.35.16
bgp domain 12687 full-mesh
bgp add router 2108 192.168.15.7

# BGP routers for 137
bgp router 192.168.0.42

add peer 20965 192.168.38.10
peer 192.168.38.10 next-hop-self
peer 192.168.38.10 up
exit

bgp router 192.168.0.40
add peer 20965 192.168.38.10
peer 192.168.38.10 next-hop-self
peer 192.168.38.10 up
exit

bgp router 192.168.32.8 add network 192.168.32.0/24
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bgp router 192.168.38.11 add network 10.35.0.0/16
bgp router 192.168.38.11 add network 192.168.38.0/24
bgp router 192.168.38.12 add network 10.35.0.0/16
bgp router 192.168.38.12 add network 192.168.38.0/24
bgp router 192.168.16.34 add network 10.15.0.0/16
bgp router 192.168.16.34 add network 192.168.16.0/24
bgp router 192.168.18.4 add network 10.17.0.0/16
bgp router 192.168.18.4 add network 192.168.18.0/24
bgp router 192.168.0.42 add network 10.0.0.0/16
bgp router 192.168.0.42 add network 192.168.0.0/24
bgp router 192.168.18.6 add network 10.17.0.0/16
bgp router 192.168.18.6 add network 192.168.18.0/24

sim run

Listing H.90: Extract of C-BGP configuration file

cbgp> bgp router 192.168.6.17 show rib *
*> 10.0.0.0/16 192.168.38.18 0 4294967295 20965 137 i

*> 10.1.0.0/16 192.168.38.18 0 4294967295 20965 2603 224 i

*> 10.2.0.0/16 192.168.38.18 0 4294967295 20965 378 i

*> 10.3.0.0/16 192.168.38.18 0 4294967295 20965 559 i

*> 10.4.0.0/16 192.168.38.18 0 4294967295 20965 680 i

*> 10.5.0.0/16 192.168.38.18 0 4294967295 20965 766 i
i> 10.6.0.0/16 192.168.6.17 0 0 null i

*> 10.7.0.0/16 192.168.38.18 0 4294967295 20965 1103 i

*> 10.8.0.0/16 192.168.38.18 0 4294967295 20965 1213 i

*> 10.9.0.0/16 192.168.38.18 0 4294967295 20965 2603 1835 i

*> 10.10.0.0/16 192.168.38.18 0 4294967295 20965 1853 i

*> 10.11.0.0/16 192.168.38.18 0 4294967295 20965 1930 i

*> 10.12.0.0/16 192.168.38.18 0 4294967295 20965 1955 i

*> 10.13.0.0/16 192.168.38.18 0 4294967295 20965 1967 i

*> 10.14.0.0/16 192.168.38.18 0 4294967295 20965 2107 i

*> 10.15.0.0/16 192.168.38.18 0 4294967295 20965 2108 i

*> 10.16.0.0/16 192.168.38.18 0 4294967295 20965 2200 i

*> 10.17.0.0/16 192.168.38.18 0 4294967295 20965 2602 i

*> 10.18.0.0/16 192.168.38.18 0 4294967295 20965 2603 i

*> 10.19.0.0/16 192.168.38.18 0 4294967295 20965 2607 i

*> 10.20.0.0/16 192.168.38.18 0 4294967295 20965 2611 i

*> 10.21.0.0/16 192.168.38.18 0 4294967295 20965 2614 i

*> 10.22.0.0/16 192.168.38.18 0 4294967295 20965 2847 i

*> 10.23.0.0/16 192.168.38.18 0 4294967295 20965 2852 i

*> 10.24.0.0/16 192.168.38.18 0 4294967295 20965 3058 i

*> 10.25.0.0/16 192.168.38.18 0 4294967295 20965 3221 i

*> 10.26.0.0/16 192.168.38.18 0 4294967295 20965 3268 i

*> 10.27.0.0/16 192.168.38.18 0 4294967295 20965 5379 i

*> 10.28.0.0/16 192.168.38.18 0 4294967295 20965 5408 i

*> 10.29.0.0/16 192.168.38.18 0 4294967295 20965 5538 i

*> 10.30.0.0/16 192.168.38.18 0 4294967295 20965 6802 i

*> 10.31.0.0/16 192.168.38.18 0 4294967295 20965 2603 8624 i

*> 10.32.0.0/16 192.168.38.18 0 4294967295 20965 9112 i

*> 10.33.0.0/16 192.168.38.18 0 4294967295 20965 2614 9199 i

*> 10.34.0.0/16 192.168.38.18 0 4294967295 20965 12687 i

*> 10.35.0.0/16 192.168.38.18 0 4294967295 20965 1955 13092 i

*> 10.36.0.0/16 192.168.38.18 0 4294967295 20965 2603 15474 i

*> 10.37.0.0/16 192.168.38.18 0 4294967295 20965 i

*> 10.38.0.0/16 192.168.38.18 0 4294967295 20965 21274 i

*> 192.168.0.0/24 192.168.38.18 0 4294967295 20965 137 i

*> 192.168.1.0/24 192.168.38.18 0 4294967295 20965 2603 224 i

*> 192.168.2.0/24 192.168.38.18 0 4294967295 20965 378 i

*> 192.168.3.0/24 192.168.38.18 0 4294967295 20965 559 i

*> 192.168.4.0/24 192.168.38.18 0 4294967295 20965 680 i

*> 192.168.5.0/24 192.168.38.18 0 4294967295 20965 766 i
i> 192.168.6.0/24 192.168.6.17 0 0 null i

*> 192.168.7.0/24 192.168.38.18 0 4294967295 20965 1103 i
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*> 192.168.8.0/24 192.168.38.18 0 4294967295 20965 1213 i

*> 192.168.9.0/24 192.168.38.18 0 4294967295 20965 2603 1835 i

*> 192.168.10.0/24 192.168.38.18 0 4294967295 20965 1853 i

*> 192.168.11.0/24 192.168.38.18 0 4294967295 20965 1930 i

*> 192.168.12.0/24 192.168.38.18 0 4294967295 20965 1955 i

*> 192.168.13.0/24 192.168.38.18 0 4294967295 20965 1967 i

*> 192.168.14.0/24 192.168.38.18 0 4294967295 20965 2107 i

*> 192.168.15.0/24 192.168.38.18 0 4294967295 20965 2108 i

*> 192.168.16.0/24 192.168.38.18 0 4294967295 20965 2200 i

*> 192.168.17.0/24 192.168.38.18 0 4294967295 20965 2602 i

*> 192.168.18.0/24 192.168.38.18 0 4294967295 20965 2603 i

*> 192.168.19.0/24 192.168.38.18 0 4294967295 20965 2607 i

*> 192.168.20.0/24 192.168.38.18 0 4294967295 20965 2611 i

*> 192.168.21.0/24 192.168.38.18 0 4294967295 20965 2614 i

*> 192.168.22.0/24 192.168.38.18 0 4294967295 20965 2847 i

*> 192.168.23.0/24 192.168.38.18 0 4294967295 20965 2852 i

*> 192.168.24.0/24 192.168.38.18 0 4294967295 20965 3058 i

*> 192.168.25.0/24 192.168.38.18 0 4294967295 20965 3221 i

*> 192.168.26.0/24 192.168.38.18 0 4294967295 20965 3268 i

*> 192.168.27.0/24 192.168.38.18 0 4294967295 20965 5379 i

*> 192.168.28.0/24 192.168.38.18 0 4294967295 20965 5408 i

*> 192.168.29.0/24 192.168.38.18 0 4294967295 20965 5538 i

*> 192.168.30.0/24 192.168.38.18 0 4294967295 20965 6802 i

*> 192.168.31.0/24 192.168.38.18 0 4294967295 20965 2603 8624 i

*> 192.168.32.0/24 192.168.38.18 0 4294967295 20965 9112 i

*> 192.168.33.0/24 192.168.38.18 0 4294967295 20965 2614 9199 i

*> 192.168.34.0/24 192.168.38.18 0 4294967295 20965 12046 i

*> 192.168.35.0/24 192.168.38.18 0 4294967295 20965 12687 i

*> 192.168.36.0/24 192.168.38.18 0 4294967295 20965 1955 13092 i

*> 192.168.37.0/24 192.168.38.18 0 4294967295 20965 2603 15474 i

*> 192.168.38.0/24 192.168.38.18 0 4294967295 20965 i

*> 192.168.39.0/24 192.168.38.18 0 4294967295 20965 21274 i

Listing H.91: C-BGP bgp show rib result for London node

cbgp> net node 192.168.6.17 show rt *
10.0.0.0/16 192.168.38.18 --- 0 BGP
10.1.0.0/16 192.168.38.18 --- 0 BGP
10.2.0.0/16 192.168.38.18 --- 0 BGP
10.3.0.0/16 192.168.38.18 --- 0 BGP
10.4.0.0/16 192.168.38.18 --- 0 BGP
10.5.0.0/16 192.168.38.18 --- 0 BGP
10.7.0.0/16 192.168.38.18 --- 0 BGP
10.8.0.0/16 192.168.38.18 --- 0 BGP
10.9.0.0/16 192.168.38.18 --- 0 BGP
10.10.0.0/16 192.168.38.18 --- 0 BGP
10.11.0.0/16 192.168.38.18 --- 0 BGP
10.12.0.0/16 192.168.38.18 --- 0 BGP
10.13.0.0/16 192.168.38.18 --- 0 BGP
10.14.0.0/16 192.168.38.18 --- 0 BGP
10.15.0.0/16 192.168.38.18 --- 0 BGP
10.16.0.0/16 192.168.38.18 --- 0 BGP
10.17.0.0/16 192.168.38.18 --- 0 BGP
10.18.0.0/16 192.168.38.18 --- 0 BGP
10.19.0.0/16 192.168.38.18 --- 0 BGP
10.20.0.0/16 192.168.38.18 --- 0 BGP
10.21.0.0/16 192.168.38.18 --- 0 BGP
10.22.0.0/16 192.168.38.18 --- 0 BGP
10.23.0.0/16 192.168.38.18 --- 0 BGP
10.24.0.0/16 192.168.38.18 --- 0 BGP
10.25.0.0/16 192.168.38.18 --- 0 BGP
10.26.0.0/16 192.168.38.18 --- 0 BGP
10.27.0.0/16 192.168.38.18 --- 0 BGP
10.28.0.0/16 192.168.38.18 --- 0 BGP
10.29.0.0/16 192.168.38.18 --- 0 BGP
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10.30.0.0/16 192.168.38.18 --- 0 BGP
10.31.0.0/16 192.168.38.18 --- 0 BGP
10.32.0.0/16 192.168.38.18 --- 0 BGP
10.33.0.0/16 192.168.38.18 --- 0 BGP
10.34.0.0/16 192.168.38.18 --- 0 BGP
10.35.0.0/16 192.168.38.18 --- 0 BGP
10.36.0.0/16 192.168.38.18 --- 0 BGP
10.37.0.0/16 192.168.38.18 --- 0 BGP
10.38.0.0/16 192.168.38.18 --- 0 BGP
192.168.0.0/24 192.168.38.18 --- 0 BGP
192.168.1.0/24 192.168.38.18 --- 0 BGP
192.168.2.0/24 192.168.38.18 --- 0 BGP
192.168.3.0/24 192.168.38.18 --- 0 BGP
192.168.4.0/24 192.168.38.18 --- 0 BGP
192.168.5.0/24 192.168.38.18 --- 0 BGP
192.168.6.1/32 0.0.0.0 192.168.6.10 2 IGP
192.168.6.2/32 0.0.0.0 192.168.6.10 2 IGP
192.168.6.3/32 0.0.0.0 192.168.6.3 1 IGP
192.168.6.4/32 0.0.0.0 192.168.6.10 2 IGP
192.168.6.5/32 0.0.0.0 192.168.6.5 1 IGP
192.168.6.6/32 0.0.0.0 192.168.6.10 3 IGP
192.168.6.7/32 0.0.0.0 192.168.6.10 3 IGP
192.168.6.8/32 0.0.0.0 192.168.6.3 2 IGP
192.168.6.9/32 0.0.0.0 192.168.6.9 1 IGP
192.168.6.10/32 0.0.0.0 192.168.6.10 1 IGP
192.168.6.11/32 0.0.0.0 192.168.6.11 1 IGP
192.168.6.12/32 0.0.0.0 192.168.6.14 2 IGP
192.168.6.13/32 0.0.0.0 192.168.6.10 2 IGP
192.168.6.14/32 0.0.0.0 192.168.6.14 1 IGP
192.168.6.15/32 0.0.0.0 192.168.6.10 2 IGP
192.168.6.16/32 0.0.0.0 192.168.6.16 1 IGP
192.168.6.18/32 0.0.0.0 192.168.6.10 3 IGP
192.168.6.19/32 0.0.0.0 192.168.6.10 3 IGP
192.168.6.20/32 0.0.0.0 192.168.6.9 2 IGP

0.0.0.0 192.168.6.16 2 IGP
192.168.6.21/32 0.0.0.0 192.168.6.21 1 IGP
192.168.6.22/32 0.0.0.0 192.168.6.9 3 IGP

0.0.0.0 192.168.6.16 3 IGP
192.168.6.23/32 0.0.0.0 192.168.6.10 2 IGP
192.168.6.24/32 0.0.0.0 192.168.6.10 2 IGP
192.168.6.25/32 0.0.0.0 192.168.6.10 3 IGP
192.168.6.26/32 0.0.0.0 192.168.6.9 2 IGP
192.168.6.27/32 0.0.0.0 192.168.6.10 4 IGP
192.168.6.28/32 0.0.0.0 192.168.6.10 4 IGP
192.168.6.29/32 0.0.0.0 192.168.6.10 3 IGP
192.168.7.0/24 192.168.38.18 --- 0 BGP
192.168.8.0/24 192.168.38.18 --- 0 BGP
192.168.9.0/24 192.168.38.18 --- 0 BGP
192.168.10.0/24 192.168.38.18 --- 0 BGP
192.168.11.0/24 192.168.38.18 --- 0 BGP
192.168.12.0/24 192.168.38.18 --- 0 BGP
192.168.13.0/24 192.168.38.18 --- 0 BGP
192.168.14.0/24 192.168.38.18 --- 0 BGP
192.168.15.0/24 192.168.38.18 --- 0 BGP
192.168.16.0/24 192.168.38.18 --- 0 BGP
192.168.17.0/24 192.168.38.18 --- 0 BGP
192.168.18.0/24 192.168.38.18 --- 0 BGP
192.168.19.0/24 192.168.38.18 --- 0 BGP
192.168.20.0/24 192.168.38.18 --- 0 BGP
192.168.21.0/24 192.168.38.18 --- 0 BGP
192.168.22.0/24 192.168.38.18 --- 0 BGP
192.168.23.0/24 192.168.38.18 --- 0 BGP
192.168.24.0/24 192.168.38.18 --- 0 BGP
192.168.25.0/24 192.168.38.18 --- 0 BGP
192.168.26.0/24 192.168.38.18 --- 0 BGP
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192.168.27.0/24 192.168.38.18 --- 0 BGP
192.168.28.0/24 192.168.38.18 --- 0 BGP
192.168.29.0/24 192.168.38.18 --- 0 BGP
192.168.30.0/24 192.168.38.18 --- 0 BGP
192.168.31.0/24 192.168.38.18 --- 0 BGP
192.168.32.0/24 192.168.38.18 --- 0 BGP
192.168.33.0/24 192.168.38.18 --- 0 BGP
192.168.34.0/24 192.168.38.18 --- 0 BGP
192.168.35.0/24 192.168.38.18 --- 0 BGP
192.168.36.0/24 192.168.38.18 --- 0 BGP
192.168.37.0/24 192.168.38.18 --- 0 BGP
192.168.38.18/32 0.0.0.0 192.168.38.18 1 STATIC
192.168.38.0/24 192.168.38.18 --- 0 BGP
192.168.39.0/24 192.168.38.18 --- 0 BGP

Listing H.92: C-BGP node show rt result for London node

cbgp> bgp router 192.168.38.9 show rib *
*> 10.0.0.0/16 192.168.38.10 0 4294967295 137 i

*> 10.1.0.0/16 192.168.38.8 0 4294967295 2603 224 i

*> 10.2.0.0/16 192.168.2.8 0 4294967295 378 i

*> 10.3.0.0/16 192.168.38.3 0 4294967295 559 i

*> 10.4.0.0/16 192.168.4.10 0 4294967295 680 i

*> 10.5.0.0/16 192.168.38.12 0 4294967295 766 i

*> 10.6.0.0/16 192.168.38.18 0 4294967295 786 i

*> 10.7.0.0/16 192.168.38.11 0 4294967295 1103 i

*> 10.8.0.0/16 192.168.38.18 0 4294967295 1213 i

*> 10.9.0.0/16 192.168.38.8 0 4294967295 2603 1835 i

*> 10.10.0.0/16 192.168.38.14 0 4294967295 1853 i

*> 10.11.0.0/16 192.168.38.18 0 4294967295 1930 i

*> 10.12.0.0/16 192.168.38.4 0 4294967295 1955 i

*> 10.13.0.0/16 192.168.38.7 0 4294967295 1967 i

*> 10.14.0.0/16 192.168.38.14 0 4294967295 2107 i

*> 10.15.0.0/16 192.168.38.4 0 4294967295 2108 i

*> 10.16.0.0/16 192.168.38.15 0 4294967295 2200 i

*> 10.17.0.0/16 192.168.17.3 0 4294967295 2602 i

*> 10.18.0.0/16 192.168.38.8 0 4294967295 2603 i

*> 10.19.0.0/16 192.168.38.14 0 4294967295 2607 i

*> 10.20.0.0/16 192.168.38.11 0 4294967295 2611 i

*> 10.21.0.0/16 192.168.38.7 0 4294967295 2614 i

*> 10.22.0.0/16 192.168.38.2 0 4294967295 2847 i

*> 10.23.0.0/16 192.168.38.5 0 4294967295 2852 i

*> 10.24.0.0/16 192.168.24.1 0 4294967295 3058 i

*> 10.25.0.0/16 192.168.38.13 0 4294967295 3221 i

*> 10.26.0.0/16 192.168.38.1 0 4294967295 3268 i

*> 10.27.0.0/16 192.168.38.17 0 4294967295 5379 i

*> 10.28.0.0/16 192.168.38.1 0 4294967295 5408 i

*> 10.29.0.0/16 192.168.38.2 0 4294967295 5538 i

*> 10.30.0.0/16 192.168.38.17 0 4294967295 6802 i

*> 10.31.0.0/16 192.168.38.8 0 4294967295 2603 8624 i

*> 10.32.0.0/16 192.168.38.16 0 4294967295 9112 i

*> 10.33.0.0/16 192.168.38.7 0 4294967295 2614 9199 i

*> 10.34.0.0/16 192.168.38.16 0 4294967295 12687 i

*> 10.35.0.0/16 192.168.38.4 0 4294967295 1955 13092 i

*> 10.36.0.0/16 192.168.38.8 0 4294967295 2603 15474 i
i> 10.37.0.0/16 192.168.38.9 0 0 null i

*> 10.38.0.0/16 192.168.38.16 0 4294967295 21274 i

*> 192.168.0.0/24 192.168.38.10 0 4294967295 137 i

*> 192.168.1.0/24 192.168.38.8 0 4294967295 2603 224 i

*> 192.168.2.0/24 192.168.2.8 0 4294967295 378 i

*> 192.168.3.0/24 192.168.38.3 0 4294967295 559 i

*> 192.168.4.0/24 192.168.4.10 0 4294967295 680 i

*> 192.168.5.0/24 192.168.38.12 0 4294967295 766 i

*> 192.168.6.0/24 192.168.38.18 0 4294967295 786 i

*> 192.168.7.0/24 192.168.38.11 0 4294967295 1103 i
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H.5 code for large-scale case study

*> 192.168.8.0/24 192.168.38.18 0 4294967295 1213 i

*> 192.168.9.0/24 192.168.38.8 0 4294967295 2603 1835 i

*> 192.168.10.0/24 192.168.38.14 0 4294967295 1853 i

*> 192.168.11.0/24 192.168.38.18 0 4294967295 1930 i

*> 192.168.12.0/24 192.168.38.4 0 4294967295 1955 i

*> 192.168.13.0/24 192.168.38.7 0 4294967295 1967 i

*> 192.168.14.0/24 192.168.38.14 0 4294967295 2107 i

*> 192.168.15.0/24 192.168.38.4 0 4294967295 2108 i

*> 192.168.16.0/24 192.168.38.15 0 4294967295 2200 i

*> 192.168.17.0/24 192.168.17.3 0 4294967295 2602 i

*> 192.168.18.0/24 192.168.38.8 0 4294967295 2603 i

*> 192.168.19.0/24 192.168.38.14 0 4294967295 2607 i

*> 192.168.20.0/24 192.168.38.11 0 4294967295 2611 i

*> 192.168.21.0/24 192.168.38.7 0 4294967295 2614 i

*> 192.168.22.0/24 192.168.38.2 0 4294967295 2847 i

*> 192.168.23.0/24 192.168.38.5 0 4294967295 2852 i

*> 192.168.24.0/24 192.168.24.1 0 4294967295 3058 i

*> 192.168.25.0/24 192.168.38.13 0 4294967295 3221 i

*> 192.168.26.0/24 192.168.38.1 0 4294967295 3268 i

*> 192.168.27.0/24 192.168.38.17 0 4294967295 5379 i

*> 192.168.28.0/24 192.168.38.1 0 4294967295 5408 i

*> 192.168.29.0/24 192.168.38.2 0 4294967295 5538 i

*> 192.168.30.0/24 192.168.38.17 0 4294967295 6802 i

*> 192.168.31.0/24 192.168.38.8 0 4294967295 2603 8624 i

*> 192.168.32.0/24 192.168.38.16 0 4294967295 9112 i

*> 192.168.33.0/24 192.168.38.7 0 4294967295 2614 9199 i

*> 192.168.34.0/24 192.168.38.10 0 4294967295 12046 i

*> 192.168.35.0/24 192.168.38.16 0 4294967295 12687 i

*> 192.168.36.0/24 192.168.38.4 0 4294967295 1955 13092 i

*> 192.168.37.0/24 192.168.38.8 0 4294967295 2603 15474 i
i> 192.168.38.0/24 192.168.38.9 0 0 null i

*> 192.168.39.0/24 192.168.38.16 0 4294967295 21274 i

Listing H.93: C-BGP bgp show rib result for DE.GEANT node
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C O D E F O R S P E C U L AT I V E F U T U R E W O R K

import autonetkit.ank as ank_utils

def validate(anm):
tests_passed = True
tests_passed = validate_ipv4(anm) and tests_passed

validate_ibgp(anm)
validate_igp(anm)
check_for_selfloops(anm)
all_nodes_have_asn(anm)

return tests_passed

def check_for_selfloops(anm):
# checks each overlay for selfloops
for overlay in anm:

selfloop_count = overlay._graph.number_of_selfloops()
if selfloop_count > 0:

print "%s has %s self−loops" % (overlay, selfloop_count)

def all_nodes_have_asn(anm):
g_phy = anm[ ’phy’]
for node in g_phy.l3devices():

if node.asn is None:
print "No ASN set for physical device %s" % node

def validate_ibgp(anm):
import networkx as nx
if not anm.has_overlay("ibgp"):

return # no ibgp v4 - eg if ip addressing disabled

g_ibgp_v4 = anm[ ’ibgp ’]

for asn, devices in ank_utils.groupby("asn", g_ibgp_v4):
asn_subgraph = g_ibgp_v4.subgraph(devices)
graph = asn_subgraph._graph
# get subgraph
if not nx.is_strongly_connected(graph):

return False
else:

return True

def validate_igp(anm):
import networkx as nx
if not anm.has_overlay("igp"):
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code for speculative future work

return # no ibgp

g_igp = anm[ ’ospf ’]

for asn, devices in ank_utils.groupby("asn", g_igp):
if asn is None:

continue
asn_subgraph = g_igp.subgraph(devices)
graph = asn_subgraph._graph
if not nx.is_connected(graph):

return False
else:

return True

def all_same(items):
# based on http://stackoverflow.com/q/3787908
return all(x == items[0] for x in items)

def all_unique(items):
# based on http://stackoverflow.com/q/3787908
seen = set()
return not any(i in seen or seen.add(i) for i in items)

def duplicate_items(items):
unique = set(items)
counts = {i: items.count(i) for i in unique}
return [i for i in counts if counts[i] > 1]

def validate_ipv4(anm):
# TODO: make this generic to also handle IPv6
if not anm.has_overlay(" ip"):

return False

g_ip = anm[ ’ ip ’]
tests_passed = True

# check globally unique ip addresses
all_ints = [i for n in g_ip.l3devices()

for i in n.physical_interfaces()
if i.is_bound] # don’t include unbound interfaces

all_int_ips = [i.ip_address for i in all_ints if i.ip_address]

if all_unique(all_int_ips):
pass

else:
tests_passed = False
duplicates = duplicate_items(all_int_ips)
duplicate_ips = set(duplicate_items(all_int_ips))
duplicate_ints = [n for n in all_ints

if n.ip_address in duplicate_ips]
duplicates = " , ".join("%s : %s" % (i.node, i.ip_address)

for i in duplicate_ints)

for bc in g_ip.nodes("broadcast_domain"):
if not bc.allocate:

return False
continue

neigh_ints = list(bc.neighbor_interfaces())
neigh_ints = [i for i in neigh_ints if i.node.is_l3device()]
neigh_int_subnets = [i.get("subnet") for i in neigh_ints]
if all_same(neigh_int_subnets):
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pass
else:

subnets = " , ".join("%s : %s" % (i.node, i.subnets)
for i in neigh_int_subnets)

tests_passed = False
print " Different subnets on %s . %s" % (bc, subnets)

ip_subnet_mismatches = [i for i in neigh_ints
if i.ip_address not in i.subnet]

if len(ip_subnet_mismatches):
tests_passed = False
mismatches = " , ".join("%s not in %s on %s" %

(i.ip_address, i.subnet, i.node)
for i in ip_subnet_mismatches)

print "Mismatched IP subnets : %s" % mismatches
else:

print "All subnets match"

neigh_int_ips = [i.ip_address for i in neigh_ints]
if all_unique(neigh_int_ips):

print "All interface IP addresses are unique"
duplicates = duplicate_items(neigh_int_ips)

else:
tests_passed = False
duplicate_ips = set(duplicate_items(neigh_int_ips))
duplicate_ints = [n for n in neigh_ints

if n.ip_address in duplicate_ips]
duplicates = " , ".join("%s : %s" % (i.node, i.ip_address)

for i in duplicate_ints)
print "Duplicate IP addresses : %s" % duplicates

if tests_passed:
print "All IP tests passed . "

else:
print "Some IP tests failed . "

return tests_passed

Listing I.1: Source code for validation example
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